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       Preface 
In the past 20 years, the decarbonization target has promoted the rapid devel-
opment of electrified mobility (eMobility) systems. At the same time, as a land-
mark of the fourth industrial revolution, the Internet of Things appeared as a great 
potential platform to have everything connected, with Big Data accessible in many 
areas, including the transport and automotive sectors. Today, two powerful forces, 
that is, Big Data and eMobility, have demonstrated the great potential to reshape 
our industry, society, and, in fact, our life.

In the realm of future mobility systems, we expect significant transformations 
as governments worldwide prioritize the reduction of carbon emissions and the 
transition to cleaner and more sustainable energy sources. The development of 
connected, autonomous, shared, and electric (CASE) vehicle technology is making 
contributions towards the carbon-neutral target. Connected mobility models and 
mobility-as-a-service (MaaS) frameworks will gain further prominence, empha-
sizing the utilization of shared transportation options and integrated mobility 
services to enhance transport efficiency and sustainability. Intelligent transporta-
tion systems (ITS) will also play a vital role in optimizing energy efficiency and 
minimizing congestion. Electric vehicles (EVs) will continue their ascent as an 
advantageous mode of transportation, decreasing dependence on fossil fuels. The 
utilization of biofuels and newly merged electric fuels (eFuel) in internal combus-
tion engine (ICE) powered vehicles will lead to lower or zero-carbon emissions. 
Hydrogen fuel cells are promising in the longer run, particularly for heavy-duty 
and long-haul transportation applications. The transition to the hydrogen era is 
attractive to all vehicles because hydrogen allows the highest energy efficiency 
in the life cycle efficiency and offers the most convenient way for energy storage.

Big Data and artificial intelligence will play key roles in the investigation and 
integration of renewable energy sources, electrified powertrains, intelligent trans-
port systems, and shared mobility models, crucial in advancing eMobility systems. 
Artificial intelligence will exhibit capabilities in enhancement of the efficiency 
and performance of eMobility systems at four levels (unit, powertrain, vehicle, 
and platoon), whereas the conventional design-of-experiments (DoE) method is 
insufficient to meet the growing demands for cost-effective vehicle product devel-
opment. Digitalization in new vehicle design is rapidly evolving, with the techno-
logical development of digital twins, the Internet of Things (IoT), and artificial 
intelligence (AI), for example, in the ability to update vehicle control software 
through over-the-air (OTA) services. Automotive original equipment manufactur-
ers (OEMs) now have the opportunity to use vast amounts of data to develop digital 
twin models in vehicle design. The deep integration of digital twin technology and 
artificial intelligence in eMobility systems will drive further advancements in the 
transport sector.

Bringing the expertise of researchers from global leading universities, most 
worked at the University of Birmingham before, this book explores the intersection 
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of Big Data and eMobility, delving into the profound impact they have on present 
and future opportunities in vehicle development. It aims to foster a platform for 
discussing the outcome, challenges, and opportunities identified in the research 
carried out by the authors. It is a comprehensive guide, offering state-of-the-art 
techniques with examples and demonstrations that offer an improved understand-
ing of how to make the eMobility system more sustainable, efficient, and intelligent 
by using the technologies discussed.

This book is organized into twelve chapters, which are categorized into three 
parts. Followed by an introductory chapter, Part I lays the foundations for the 
design, optimization, and management of the power sources in electric vehicles. 
Part II explores the design, management, and control of the electric vehicle at 
the powertrain level. In Part III, the impact of real-world driving uncertainties, 
including driver behaviors, traffic lights, and inter-vehicle interactions on the 
performance of electric vehicles is discussed.

We hope that this book will provide a thought-provoking and enlightening 
journey, offering valuable insights, inspiring ideas, and a vision for a future where 
Big Data and eMobility intertwine to create a smarter, greener, and more efficient 
world.

Prof Hongming Xu, CEng, FIMechE, FHEA, FSAE
Chair Professor in Energy and Automotive Engineering,  

University of Birmingham
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Introduction

Quan Zhou and Haoran Zhang

     1.1  BACKGROUND

Decarbonization requires global actions from almost all industry sectors. The fig-
ure from the International Energy Agency (IEA) shows that the transport sector 
contributed to one-fifth of the total carbon emissions; therefore, decarbonization 
in the transportation sector is in urgent demand, and it requires collaborations 
from multiple disciplines. Chemical engineers are working on new ways of pro-
ducing zero-emission fuels and advanced energy storage devices. Civil engineers 
are improving transport networks, making them smarter, safer, more efficient, and 
greater integration with the power grid. Automotive engineers are optimizing the 
design of vehicles, making them transit from fossil fuel-based propulsion to elec-
trified propulsion.

In the era of Industry 4.0, the power and scope of the Internet are becoming 
all-encompassing connecting people, vehicles, and infrastructure. Ultimately, all 
vehicles will be connected and work as intelligent agents to benefit society. The 
technology roadmap of the UK advanced propulsion center (APC) highlights that 
the electrified vehicle is more suitable for the Internet of Vehicles and autonomous 
driving. And the connected vehicles would be mobile platforms collecting Big Data 
for advanced control and management, and also for the evolution of vehicle products.

Therefore, incorporating Big Data and electric mobility systems would generate 
huge impacts on people’s life. This will not only contribute to environmental protec-
tion in terms of reducing CO2 and other harmful emissions but also provide more 
energy-efficient and cheaper solutions for the transportation of people and goods.

     1.2  BIG DATA: DEFINITION, HISTORY, 
AND RECENT DEVELOPMENT

Big Data is made up of larger, complex datasets that originate from increasingly 
new sources of data. These datasets are so massive that the abilities of traditional 
data processing software are insufficient to manage them. Nevertheless, these 
massive volumes of data can be used to address business problems that would not 
have been tackled before.

A simple definition of Big Data organized around Big Data’s three Vs could 
be large volumes of data that contain immense variety and are generated at 
increasing velocity. Recently, six other Vs and one C have been added to define 
the truthfulness and meaningfulness of data as veracity, infrequency as validity, 
extracting value from the collected data, replicability in the form of visualizations, 
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processability in a virtual cloud platform, data variability, and complexity, purely 
in computation form.

Though the concept of big data is still emerging, the origins of large datasets 
go back to the 1970s when the world of organized data in the first data centers was 
emerging. In addition, the development of the relational database further consoli-
dated the concept. Around 2005, researchers identified just how much data users 
generated through SNS, video streaming services, and other online services. In 
parallel to these developments, data organization and storage systems were devel-
oped as well. Hadoop, an open-source framework created specifically to store and 
analyze large datasets, was developed around the same year. This development of 
open-source frameworks such as Hadoop, Spark, and others was essential for the 
growth of Big Data because they make data storage cheaper and enhance the ease 
of engaging with Big Data sets.

Nevertheless, the volume of Big Data has been at an all-time high, as is the 
dependency on it for decision-making. Users of the system are still generating 
significant amounts of data. However, it is not just humans that are engaging with 
systems. Evolution in smartphone and sensor technology now allows devices to 
communicate through the Internet of Things (IoT) network. Besides, advance-
ments in devices and communication network systems have eased data gathering 
for various indicators and drawing performance insights. Moreover, the emer-
gence of artificial intelligence and machine learning has churned out diversity and 
cross-operability across various platforms.

Furthermore, cloud computing has expanded Big Data possibilities in truly 
elastic scalability. Such scalability is of critical importance in analyzing and sup-
porting demands in services. We focus on this aspect of Big Data to solve chal-
lenges that hinder future development, particularly in understanding the emerging 
area of the Internet of Things.

     1.3  EMOBILITY: THE FUTURE OF TRANSPORT SYSTEM

Electrification is a global action to achieve carbon neutrality. Apart from railway 
vehicles, road vehicles are now largely dependent on electrified powertrain sys-
tems. According to the IEA’s prediction, there would be over 3 billion electrified 
vehicles on road by 2050. The electrified vehicles include battery electric vehicles, 
fuel cell vehicles, and plug-in hybrid vehicles, which are mainly driven by electric 
motors so that the propulsion system can operate with much higher energy effi-
ciency compared to the conventional internal combustion (IC) engine-driven vehi-
cles. However, the energy supply systems of electrified vehicles are more complex 
than conventional vehicles as they normally have more than one energy source. 
Therefore, the selection of onboard energy sources and the design and control of 
the energy management systems are critical for electrified vehicles.

Vehicle electrification provides more degrees of freedom for the selection of 
energy resources. Distinguished from the conventional IC engine vehicles that 
are fuelled with fossil fuels, for example, gasoline and diesel, the electrified vehi-
cles are capable of being driven by low-carbon or zero-carbon fuels. Electro-fuel 
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(E-fuel) is an emerging topic and is normally produced by storing energy from 
renewable sources in the chemical bonds of liquid or gaseous fuels in a synthesis 
reactor. The most popular E-fuel is hydrogen, and there are two mainstreams to 
utilize hydrogen fuel for vehicle energy supply. The world’s first hydrogen-powered 
car, Toyota MIRAI, has been produced in 2014, which is powered by a 114 kw fuel 
cell stack. The volume power density of Toyota’s fuel cell is 3.1 kW/L. Nevertheless, 
fuel cell vehicles are still suffering some underlying challenges, for example, high 
cost. Hydrogen engines are also under rapid development as they can be based on 
the existing IC engine technology. The hydrogen engine is cheaper since it does 
require high-purity hydrogen, but the design of high durability hydrogen engine 
is a challenging task. Other carbon-containing E-fuels, methane, methanol, DME, 
etc. can be produced if the renewable hydrogen gas is reacted with CO2 captured 
from the air or the exhaust gas of industrial burners. The power units for those 
E-fuels are also being developed as an alternative solution to hydrogen.

The design and control of the onboard energy system for the electrified vehicle 
are challenging because engineers need to balance multiple design targets through 
the optimization of hundreds and thousands of design/control parameters. Most of 
the optimization tasks are highly nonlinear and involve unpredictable factors, such 
as optimization of the energy management control. Advanced optimization and 
control algorithms are in urgent demand so that the vehicle can achieve maximum 
energy efficiency in real-world driving. Recent research highlights that energy 
consumption can be reduced by up to 20% if the powertrain control is incorporated 
with the information from the intelligent transportation system, such as traffic 
flow and traffic light signals. The optimization algorithms need to be fast enough 
to enable online optimization in real-time control so that the control strategy can 
be adapted to the dramatical change of the driving environments. Conventional 
design of experiment (DoE)–based R&D of vehicle powertrains is transiting from 
model-based design into artificial intelligence-empowered design and optimiza-
tion. Therefore, future vehicle and transport systems would be benefitted from the 
rapid development of Big Data and the Internet of Things (Vehicles).

     1.4  BIG DATA FOR EMOBILITY

eMobility offers the ideal opportunity to introduce renewable energy sources more 
widely into the transport sector. Electric vehicles are a key player in transport- 
oriented smart cities powered by smart grids, as they help make these cities 
greener by reducing vehicle emissions and carbon footprints. The number of elec-
tric passenger vehicles has the potential to increase from 2 million in 2016 to 200 
million by 2030.

From dashboard apps to battery charge rates or position and acceleration levels, 
electric vehicles generate, store, and collate a huge amount of data every min-
ute. The vast amount of data generated by electric vehicles could be beneficial to 
engineers and developers of these models. A comprehensive summary of current 
advanced data mining efforts for electric vehicles can provide a true understanding 
of their performance and pave the way for widespread commercial applications.
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Big Data and eMobility are at the forefront of information technology and tran-
spiration, respectively. Incorporating state-of-the-art techniques in these fields 
would generate huge impacts on IT and transportation and other related industry, 
making our lives greener, more harmonic, and more intelligent. However, cur-
rent knowledge of Big Data and eMobility is fragmented. Big Data–based elec-
tric mobility development is an emerging topic both in academic and industrial 
aspects. Currently, all studies about Big Data in electric mobility are fragmented. 
No work has summarized the systemic knowledge in this field. Specifically, there 
is no book focusing on introducing how to screen and process the potential value 
from the deluge of unverified, noisy, and sometimes incomplete information for 
electric mobility development. However, this knowledge is significant for stake-
holders, such as researchers, engineers, operators, company administrators, and 
policymakers in related fields, to comprehensively understand current technolo-
gies’ infra-knowledge structure and limitations. Therefore, we planned to write a 
book aiming to establish a systematic knowledge of Big Data methods for eMobil-
ity and thus make a timely contribution to this new area.

This book aims to help audiences systematically understand

 1) How to define and reinvent data-driven mobility models by studying 
urban mobility, transportation behavior, energy system management, 
and electrification potential.

 2) Within the regular electric mobility research framework, how can we 
characterize the nature of data-enabled electric mobility research direc-
tion, and what are the similarities and differences?

 3) The existing positive and successful electric mobility technologies 
that can be identified in the studied domain, and how can they be best 
applied for practical success.

The contributions of our book to the literature and dialogue are

 1) In addition to the factors of policy and market, the most significant 
development bottleneck is from technical limitations. This book mainly 
wants to systematically summarize the current fundamental technol-
ogies of electric mobility to help to promote the development of the 
electric mobility industry.

 2) The introduction from the technical aspect can help people to under-
stand the potential of electric mobility in the future city more intuitively 
than the conceptual introduction.

 3) Currently, topics of AI and Big Data are very hot and popular. Our 
book can help the audiences to understand electric mobility technolo-
gies from the view of AI researchers and data scientists.

Cornerstone technologies in the sphere of Big Data and eMoblity will be intro-
duced in the chapters of this book. Chapters are written in the form of summaries 
of the frontier technologies applicable in eMobility harnessing the emerging IoT 
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and Big Data. This book will introduce the key technologies from carbon-neutral 
fuels to onboard power and energy systems and their synergies. The utilization of 
Big Data and advanced artificial intelligence techniques and their application in 
the design, control, and operation management of the eMobility systems also will 
be introduced. Within the scope of Big Data and mobility systems, the book will 
offer demonstrated answers to the following 11 questions:

 1) How are carbon-neutral fuels produced, and how can they power the 
primary movers to mobility systems?

 2) How can the primary and secondary energy resources be stored in the 
vehicle systems, and what is the most energy-efficient method to con-
vert the energy into propulsion power?

 3) How to maximize the use of used energy storage devices, and how to 
recycle them with the minimum environmental impacts.

 4) How to maximize the vehicle’s energy efficiency through the multi- 
objective optimization of powertrain topology and component size?

 5) What are the impacts of vehicle electrification on vehicle R&D? How to 
develop world-leading electrified vehicles with the minimum cost and 
time?

 6) How does vehicle electrification impact the design of future thermal pro-
pulsion systems, and what is the future of internal combustion engines?

 7) How much waste energy can be recovered from the vehicle powertrain 
system, and what are the main solutions to recover the thermal energy 
into electricity for automotive applications?

 8) What are the impacts of driver behaviors on vehicle energy perfor-
mance? How to regulate vehicle control strategy for different end-users?

 9) What is the theoretical optimal energy performance over a given driving 
cycle, and how to optimize the vehicle energy through advanced control?

 10) How does the traffic condition impact the vehicle energy performance, 
and how can the models of traffic scenarios contribute to vehicle energy 
optimization?

 11) What is the impact of vehicle automation on vehicle energy perfor-
mance, and how to incorporate advanced driving control with vehicle 
energy optimization?

The rest of the book is organized into 11 chapters to address the preceding 11 
questions.

Chapter 2 will address the first challenge by introducing the next-generation 
fuels for automotive, electric fuels (e-fuels). It will provide a brief introduction to 
the definition, significance, and classification of e-fuels. The implementation of 
e-fuels on internal combustion engines and how they will make a timely contribu-
tion to carbon neutrality will also be demonstrated in Chapter 2.

The second research question will be answered in Chapter 3, which provides 
a comprehensive review of current energy storage devices and discusses the prin-
ciple for selecting energy storage devices for automotive applications. Chapter 3 
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will also demonstrate data acquisition methods for the design of driving cycles 
and artificial intelligence techniques for the design and control of energy storage 
devices.

In Chapter 4, health identification algorithms and second-life applications for 
vehicle energy storage devices will be introduced to address the third challenge. 
This chapter will start with the performance parameters of common powertrain 
components such as fuel cells, batteries, and supercapacitors, and explore the pre-
diction method of component remaining service life and the way to improve second- 
life value from the degradation mechanism and influencing factors.

Chapter 5 of the book will be primarily centered around the fourth challenge, 
delving into the obstacles encountered within the automotive sector when adopt-
ing model-based product development. The chapter will introduce the notion of 
automotive digital twins (DT) as a potential solution, outlining a comprehensive 
system comprised of four core components: the physical characteristics of the 
vehicle, virtual systems, data interface, and connected intelligence. Furthermore, 
a detailed case study will be presented, illustrating the practical applications 
of DT in the realm of vehicle control. To conclude the chapter, an overview of 
forthcoming technology trends and potential avenues for further research will be 
provided.

Chapter  6 provides the answers to the fifth question. It covers the topology 
and component size design of electrified powertrains. Following a classification of 
electrified vehicles based on their degree of hybridization, two types of pure elec-
tric powertrains and four types of hybrid powertrains are introduced and analyzed. 
Component sizing methods, including conventional design of experiment methods 
and artificial intelligence-driven methods are introduced.

To address the sixth challenge, Chapter 7 introduces the principles and meth-
ods for the design of dedicated thermal propulsion systems for electrified vehi-
cles. This chapter provides a preliminary overview of the advanced technologies 
used and to be used for electrified passenger cars in recent years. Some potential 
techniques will also be presented and discussed, including gasoline compression 
ignition engines, hydrogen, and fuel/engine co-optimization.

Chapter 8 will introduce thermal management methods for eMobility and thus 
make a timely contribution to challenge 7. Following the analysis of the potential 
of heat energy recovery, this chapter introduces the main thermal management 
methods and heat recovery techniques. Based on the summarization and discus-
sions on the development and thermal management of HPAC, future potential 
development directions for HPAC for EVs are pointed out.

In Chapter 9, the answers to Challenge 8 will be discussed. It serves to intro-
duce the concept of driving behavior modeling and its integral role in vehicle 
supervisory control. Followed by a comprehensive overview of driving behavior, 
the significance of driver behavior within both industrial and academic realms is 
explicated, particularly within the context of VSC. The mainstream driver-oriented 
control methods are introduced while demonstrations are provided for control of 
hybrid and electric vehicles. Finally, outlook and future technology development 
trends are provided.
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In Chapter 10, the answers to Challenge 9 will be provided. This chapter intro-
duces the global optimization methods for control of the electrified vehicle over a 
given driving cycle. The main challenges for global optimization will be discussed 
in terms of standardization, real-time application, control accuracy, and drivabil-
ity satisfaction. State-of-the-art techniques to address these four challenges are 
discussed, and a prospect of future research directions is provided.

Chapter 11 evaluates the impact of the traffic environment on vehicle energy 
performance and discusses the methods to mitigate vehicle energy consumption 
based on traffic information. In this chapter, a traffic simulation platform is intro-
duced to simulate main traffic scenarios in real-world driving. Following the mod-
eling work of the vehicle powertrain, optimization methods considering traffic 
impact is introduced. An outlook and prospects for traffic-informed vehicle energy 
optimization are given in this chapter.

Chapter 12 aims to address the last challenge through driving control and traf-
fic predictive modeling for electrified vehicles with autonomous driving functions. 
The requirement for the development and assessment of electrified vehicles will 
be discussed and mathematical models will be developed for the multiple objective 
optimization problems. Emerging methods for driving and traffic control and their 
cooperation for energy optimization will be introduced. Outlook for future intelli-
gent transportation systems and eMobility systems will be discussed.

     1.5  SUMMARY

The power and scope of the Internet are becoming all-encompassing connect-
ing people, vehicles, and infrastructure. Ultimately, all vehicles will be connected 
and work as intelligent agents to benefit society. Decarbonization requires global 
actions from almost all industry sectors. Therefore, incorporating Big Data and 
electric mobility systems would generate huge impacts on people’s life. This book 
aims to establish a systematic knowledge of Big Data methods for eMobility and 
thus make a timely contribution to this new area. This book has 11 individual chap-
ters to address the grand challenges in the field of eMobility harnessing Big Data 
and artificial intelligent methods. State-of-the-art technologies are introduced to 
improve energy efficiency and reduce carbon emissions from the perspectives of 
energy carrier selection, component design, powertrain system integration, oper-
ation control, and cooperative optimization harnessing intelligent transportation 
systems. The power of Big Data for eMobility has been demonstrated in different 
scenarios, and the outlook of future research directions is given in each chapter.
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     2.1  WHAT IS E-FUEL?

E-fuels, also known as electrofuels, power-to-liquids, power-to-gas, e-gas, air-to-fuels,  
or CO2-based synthetic fuels are produced by storing energy from renewable 
sources in the chemical bonds of liquid or gaseous fuels in a synthesis reactor. 
Hydrogen gas can be produced through electrolysis using electricity from wind 
turbines, solar cells, geothermal, or hydroelectricity, eliminating carbon emissions 
entirely at the point of production.1 Ammonia can also be considered as an e-fuel 
if it is produced by nitrogen (from air) and hydrogen gas produced from renewable 
energy sources. Other carbon-containing e-fuels, methane, methanol, and DME, 
etc., can be produced if the renewable hydrogen gas is reacted with CO2 captured 
from air or from exhaust gas of industrial burners.2

Sometimes in the literature, metal fuel is also called electrofuels; metal 
fuels are produced through electrochemical reduction reactions of their oxides, 
if the energy source for the reaction was electricity.3 In this chapter, e-fuel 
only refers to liquid and gaseous fuels synthesized by using renewable energy 
sources.

        2 
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     2.2  WHY E-FUEL?

Carbon dioxide (CO2) is the most important greenhouse gas on earth. Its concen-
tration has reached 413.2 parts per million in 2020, 149% of the preindustrial level. 
Even the economic slowdown caused by COVID-19 has no significant impact on 
the level of greenhouse gases and its growth rate. If no measures are taken to inhibit 
the continuous rise of CO2 concentration, global temperatures will continue to rise. 
Given the long life of CO2, even if CO2 emissions were rapidly reduced to net zero, 
the observed temperature levels will continue for decades. While the temperature 
rises, it also means that extreme weather events will occur more frequently, includ-
ing elevated temperature and heavy rainfall, melting ice and snow, rising sea level, 
and ocean acidification, with far-reaching socio-economic impacts.

Today, about half of the CO2 emitted by human activities remains in the atmo-
sphere. The other half is absorbed by marine and terrestrial ecosystems. The com-
munique points out that it is worried that the capacity of terrestrial ecosystems and 
oceans as “sinks” may become less effective in the future, thereby reducing their 
ability to absorb carbon dioxide and cushion greater temperature rise.4

Two-thirds of global CO2 emissions come from the energy system, and fossil 
fuels account for 80% of the current global primary energy demand. Fossil fuel 
were formed by ancient plants and animals through pressure, temperature, and 
changes of tens of millions to hundreds of millions of years. Fossil fuels make us 
no longer rely on direct sunlight today, but use concentrated solar energy that has 
been stored for millions of years. This also has a negative impact. Considering the 
timeliness of the carbon cycle, burning fossil fuels is constantly releasing carbon 
dioxide and promoting global warming.5

Transportation sector consumed about 1/4 total world energy. The main energy 
carrier in the transportation sector is gaseous or liquid fuel due to the high energy 
density. If fuel production is to capture CO2 in the atmosphere and release CO2 in 
the subsequent combustion process, it can achieve life-cycle net zero carbon emis-
sion. Using such fuel in the transportation sector will have a significant impact on 
the level of greenhouse gases and its growth rate.

To achieve life-cycle net zero carbon emission, fuels can be produced in two 
ways, biofuel and e-fuel.

Plants can seal CO2 in itself from the atmosphere through photosynthesis. 
Therefore, biofuels made from plants naturally have the attribute of zero carbon 
emission. Biofuels are by now a well-established component in the liquid fuels 
market. For example, biofuels are commonly added to vehicle fuel in EU coun-
tries. According to the estimation of fuel use data of all EU member states of 
Eurostat, from 2015 to 2019, the total mixing proportion of ethanol in gasoline fuel 
increased from 5.09% to 5.92%, while the total mixing proportion of biodiesel in 
diesel fuel increased from 5.92% to 6.50%.6

To date, all commercial approaches to biofuels involve photosynthetic capture 
of solar radiation and conversion to reduced carbon; however, there are some lim-
itations by using biofuel. With the development of using biofuels as vehicle fuels, 
there is a growing voice about the food crisis caused by biofuels. People artificially 
use corn and cereals to make biofuels which are supposed as food, reducing the 
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FIGURE 2.1 WTW GHG emissions comparison of different fuel production pathways.7

global food supply. To solve these problems, it was proposed to use non-food crops 
to produce biofuels. This avoids direct competition between biofuel and grain 
crops. However, it must be recognized that producing non-food crops still need 
farmers and appropriate farming conditions. Due to the limited number of farmers 
and cultivated land, if part of the resources is allocated to produce plants for bio-
fuel manufacturing, the output of food crops will be reduced, which will also push 
up the price of food crops. The second-generation biofuels use lignocellulosic raw 
materials and the third-generation biofuels from algae use nonedible raw material 
sources that can be used to produce biodiesel and bioethanol. However, the low 
efficiency presents significant challenges to scaling the new biofuel production.

The CO2 obtained by air carbon capture can be sealed in e-fuel through the electric 
energy generated by renewable energy power generation (solar, wind, hydropower, 
and other renewable energy). At present, renewable energy, such as wind energy and 
solar energy, is developing very fast. The first reason is that the cost is reduced due to 
technological improvement, and the second reason is that it has received strong gov-
ernment support. However, the instability of wind and solar energy makes it difficult 
to match the stable power demand. With the proportion of renewable energy such 
as wind energy and solar energy rising, reasonable measures must be taken to solve 
this problem. E-fuel is a good carrier for the electric energy from renewable energy 
sources, which helps address the problem of intermittency that confronts efforts to 
increase the amount of renewable power on the electric grid. Compared to battery 
and biomass, the mass energy density of e-fuel is much higher.8
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In the meantime, the energy loss during storage and transportation is low for 
e-fuel compared to that with batteries. In addition, because renewable energy such 
as solar energy and wind energy do not need additional land and farmers, the con-
tradiction between e-fuel production and crop planting is not significant.9

     2.3  CLASSIFICATION OF E-FUEL

Conventional fossil fuels, gasoline and diesel, have great advantages as vehicle 
engine fuels in the following aspects:

 1) They are liquid fuel with a high energy density both in mass and vol-
ume, so that they can provide a relatively long vehicle driving range.

 2) They have moderate viscosity and volatility, so that they can mix with air in 
the cylinder in a reasonable duration for the subsequent combustion event.

 3) The ignitability of gasoline and diesel are just the opposite.

The combustion organization of modern gasoline and diesel engines are designed 
for the specific fuel ignitability, and only those fuel with ignitability in the require-
ment of gasoline/diesel engines can be used. E-fuel includes a variety of fuels. 
Most of the e-fuels are very common substances in our life. E-fuels, which have 
been mentioned in the literature, are listed in Table  2.1.10 Alcohols, including 
methanol, ethanol, and butanol have quite similar properties compared with gas-
oline. Other e-fuels, however, differ from gasoline and diesel in terms of one or 
more properties. Therefore, based on different properties, e-fuel can be classified 
in different ways. These properties which are highly related to engine operation, 
are the fuel ignitability, the state under normal temperature and pressure, the ele-
mental composition, and the fuel component.

The first and most important property is fuel ignitability, which determines the 
combustion organization of the engine. Fuels can be divided into gasoline-like fuel 
with low ignitability scaled by fuel octane number and diesel-like fuel with high 
ignitability scaled by cetane number. Luckily, e-fuel is either gasoline-like fuels or 
diesel-like fuel, and no e-fuel exhibits ignitability between the gasoline and diesel 
ignitability requirement (not suitable for either gasoline engines or diesel engines). 
Gasoline-like include synthetic gasoline, hydrogen gas, ammonia, alcohol, and 
methane, while diesel-like fuels include synthetic diesel and ether fuels.

According to the state under normal temperature and pressure, e-fuels can be 
divided into gaseous fuel and liquid fuel. The state under normal temperature and 
pressure determines the design of fuel supply system. The fuel supply system of 
conventional gasoline and diesel engines is designed for liquid fuel, and the system 
requires modification if gaseous fuel is applied. Gaseous fuels include hydrogen 
gas, ammonia, methane, and dimethyl ether, while liquid fuels include synthetic 
gasoline, synthetic diesel, alcohol, etc.

The element composition and component of fuel influence more detailed prop-
erties. If the fuel contains oxygen or nitrogen, the mass energy density is low, 
and the engine exhaust gas contains more by-products which is not common in 
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TABLE 2.1
Fuel Properties of E-Fuels

Density Boling Latent heat of Autoignition Laminar Octane Cetane Lower heating Flammability 
Property Formula in liquid point evaporation temperature flame speed number number value limit

Unit Kg/m3 oC kJ/kg K m/s kJ/kg %

Hydrogen gas H2  39 –252 – 773–850 3.51 130 – 120 4–75

Ammonia NH3 600 –33 – 930 0.07 130 – 18.8 15–28

Methanol CH3OH 791  65 1109 742 0.52 110 – 19.7 6.7–36

Ethanol C2H5OH 690  78  904 690 0.54 110 – 26.8 4.3–19

Butanol C4H9OH 809 ~118  584 614 0.5  96 – 33.1 1.4–11.2

DME CH3OCH3 660 –29.5  460 506 0.45 – 55 28.8 3.4–17

Methane CH4 420 –161.5 – 650 0.355 130 – 55 5–13.9

Gasoline C5-C12 700–750 25–215 310–320 575–675 0.58 90–100 – 44 1–6

Diesel C10-C26 800–860 180–360 251–270 520 – – >50 42.5 1.4–7.6
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FIGURE 2.2 Comparison of base case costs for the synthesis of 1 lDE e-fuel.11

conventional engines. Different components have different laminar flame speed 
and flammability limit. According to the element composition, e-fuel can be 
divided into carbon free fuel, hydrocarbon fuel, and oxygenated hydrocarbon fuel. 
Carbon free fuels include hydrogen gas and ammonia; hydrocarbon fuels include 
methane, synthetic gasoline, and synthetic diesel; and oxygenated hydrocarbon 
fuels include alcohol and ether fuels. According to the components, e-fuel can be 
divided into hydrogen, ammonia fuel, alcohol, hydrocarbon, and ether fuels.

     2.4  COMPARISON OF E-FUELS IN FINANCIAL 
COST AND WELL-TO-WHEEL ANALYSIS

     2.4.1  Manufacturing cost 

At present, large-scale e-fuel production is immature. The financial costs of e-fuel 
manufacturing are still very high. Figure 2.2 shows the comparison of the manu-
facturing cost of the various synthesis routes towards alcohols, ethers, and hydro-
carbons. The energy demand presented is the energetic equivalent of 1 L of diesel, 
the values being independent of the size of the plant. For all e-fuel, the first step 
of manufacturing is hydrogen gas production, which accounts for most of the cost. 
Due to the difference of conversion efficiency, the hydrogen gas production cost 
of other fuels except H2  is also increased accordingly. In addition, CO2 capture, 
high-pressure steam, and other processes also increase costs. Therefore, regarding 
the cost of manufacturing, hydrogen gas is significantly lower than other e-fuels, 
and methanol, DME, and synthetic gasoline (MTG) are better than other fuels.

     2.4.2  Well-to-Wheel analysis 

Beside financial cost, the energy consumption is another important aspect for e-fuel 
industrial chain. From electric energy to vehicle wheel driving power, energy goes 
through a series of processes, including production, storage, transportation, as 
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FIGURE 2.3 Well-to-miles analysis results for the five e-fuel fuels.12

well as the conversion inside the vehicle powertrain, and each process consumes 
energy and reduces the well-to-wheel efficiency. Figure 2.3 show well-to-wheel 
analysis results for the five e-fuels. In addition, an electric vehicle using electric 
energy directly is included for comparison. Here, hydrogen gas is considered as 
using in fuel-cells, while other fuels as using in internal combustion engines both 
with or without a hybrid powertrain system which is close to the present scenario. 
H2 still has advantages in energy conversion rate in Figure 2.3, compared with 
other fuels. On one hand, the manufacturing energy loss is lower, and on the other 
hand, the brake thermal efficiency of fuel-cells is higher than that of internal com-
bustion engines.

     2.5  HYDROGEN

     2.5.1  resources 

Hydrogen widely exists in nature. Water contains 11% hydrogen, and oil, natu-
ral gas and animals and plants also contain hydrogen. However, the amount of 
hydrogen gas in nature is quite small. As an e-fuel, hydrogen gas can be produced 
directly by electrolyzing water. It is the e-fuel with the lowest production cost and 
highest energy efficiency.

 H O H O2 2 2→ +
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At present, the main sources of hydrogen gas are still natural gas reforming and 
gasification reaction. Electricity—from the grid or from renewable sources such as 
wind, solar, geothermal, or biomass—is also currently used to produce hydrogen 
gas, but it has not been widely used yet.13

     2.5.2  ProPerties 

Hydrogen gas is the lightest gas with no color and taste. Hydrogen gas is a typical 
gasoline-like fuel because it has high auto-ignition temperature and high octane 
number. The octane number of hydrogen is 130, which is higher than the lower 
limit of gasoline fuel (90). But some properties are quite different between hydro-
gen gas and gasoline fuel. Hydrogen is gaseous under normal temperature and 
pressure. The mass energy density of hydrogen is very high, which is three times 
that of gasoline, but the density of hydrogen gas is low, which leads to low vol-
ume energy density. Liquid hydrogen needs to be kept at a very low temperature 
(about—252.8 ℃), and does not have a very high density. Hydrogen exhibits wide 
flammability limits (4%–75%), extremely high diffusion speed and flame prop-
agation rate. However, the minimum ignition energy (0.02 mJ) is one order of 
magnitude lower than that of conventional fossil fuels.

     2.5.3  Benefits 

One of the important benefits of using hydrogen as vehicle fuel is that the only 
product of complete combustion of hydrogen is water, so the emission is cleaner 
than ordinary hydrocarbon fuels. Hydrogen gas has good potential to achieve high 
thermal efficiency in internal combustion engines. First, the flammability limits of 
hydrogen are wide, which is suitable for lean combustion. Secondly, hydrogen gas 
exhibits a high diffusion rate, and the laminar burning velocity of hydrogen is over 
3 m/s, which is much higher than other fuels, so the combustion duration of hydro-
gen is short. For internal combustion engines, thermal efficiency is highly related 
to combustion duration. Finally, the irreversible loss of hydrogen combustion is 
low, providing more exhaust energy to be recovered if exhaust energy recovery 
system is used.

     2.5.4  shortages 

Hydrogen gas has many shortages in terms of storage, transportation, and volu-
metric energy density. The density of gaseous hydrogen is very low, leading to very 
low volumetric energy. The volumetric energy density can be increased through 
liquification or compression. Liquid hydrogen needs to be kept at a very low tem-
perature (about—252.8 ℃), and the density is only 71 g/L, which is one order of 
magnitude lower than gasoline fuel. The density of hydrogen is 28 g/L and 40 g/L 
with the storage pressures of 300 bar and 700 bar, respectively. Liquification 
of hydrogen consumes 30%-40% total energy of hydrogen. Hydrogen also has 
embrittlement effects, which makes the container leak after storing hydrogen 
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for a period of time, which has great potential safety hazards during storage and 
transportation.

In terms of engine combustion, although hydrogen has high auto-ignition tem-
perature and high octane number, its minimum ignition energy is one order of 
magnitude lower than that of conventional hydrocarbon fuel. Due to the low min-
imum ignition energy, hydrogen is easy to be ignited by hot spots and even resid-
ual gas in the cylinder, resulting in strong knocking during engine operation and 
engine damage. The quenching distance of hydrogen is short, and the temperature 
gradient near the combustion chamber wall is large, resulting in high heat transfer 
loss and high wall temperature. In addition to the extremely high flame propagation 
speed of hydrogen, it is easy to produce inlet manifold backfire. Hydrogen com-
bustion only generates water, so the humidity of the burned gas is very high and 
easy to emulsify and denature the lubricating oil of internal combustion engine, 
reducing the durability of internal combustion engines. High-humidity exhaust 
gas is also harmful to the durability of the aftertreatment system.14

     2.6  AMMONIA

     2.6.1  resources 

Ammonia is the second largest chemical product in the world, mainly used as fer-
tilizer and refrigerant. At present, ammonia fuel is mainly synthesized by N2  and 
H2  through the Haber-Bosch process.

 N H NH2 2 3+ →

N2  can be easily separated from the air, and H2  comes from either the conversion 
of fossil fuels or electrolyzing water. China produced 31.9% total ammonia in 
the world, followed by Russia with 8.7%, India with 7.5%, and the United States 
with 7.1%.

     2.6.2  ProPerties 

Ammonia molecule has a trigonal pyramidal shape with three hydrogen atoms and 
an unshared pair of electrons attached to a nitrogen atom. Ammonia is gaseous 
under normal temperature and pressure. Ammonia is a chemical substance with 
strong lipophilicity, hydrophilicity, permeability, and corrosivity. At 20 ℃, 56 g 
ammonia can be dissolved in 100 g water. With high auto-ignition temperature 
and high octane number, ammonia is also a typical gasoline-like fuel. The mass 
energy density of ammonia is about 45% of that of gasoline. Compared to hydro-
gen, ammonia liquification is much easier. Usually, liquid ammonia is stored in a 
liquid ammonia bottle with a pressure of around 10 bar. The volume energy den-
sity of liquid ammonia is more than one third of that of gasoline. The latent heat 
of vaporization of ammonia is 1371 kJ/kg, which is about 4 times that of gasoline. 
It exhibits relatively narrow flammability limits (16%-25%), and extremely low 
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laminar flame speed (7 cm/s). The minimum ignition energy (8 mJ) is more than 
one order of magnitude higher than that of conventional fossil fuels.15

     2.6.3  Benefits 

Ammonia is also a carbon-free fuel. Ideally, the only product of complete combus-
tion of ammonia is water and nitrogen, so the emission is cleaner than hydrocar-
bon fuels. Compared to hydrogen, the infrastructure for the production, storage, 
and transportation of ammonia fuel is relatively mature, and the energy and cost 
of ammonia liquification are far lower than that of hydrogen. The energy of liquid 
ammonia is over five times of compressed hydrogen gas.

     2.6.4  shortages 

The low activity of ammonia is the biggest obstacle to its application in internal 
combustion engine. The extremely high ignition temperature and minimum igni-
tion energy make it difficult for ammonia to achieve stable ignition in the internal 
combustion engine, resulting in the high combustion variation and even misfire 
with a large amount of unburned ammonia at the end of the cycle. In addition, 
the laminar burning velocity of ammonia is the lowest in all the e-fuels, and its 
application in the engine will greatly extend the combustion duration, reducing 
the engine thermal efficiency. Therefore, to use ammonia as fuel in an internal 
combustion engine, it is necessary to use combustion assistance technology, such 
as hydrogen blending, pre-chamber jet ignition to improve the combustion qual-
ity. However, all these technologies will increase the complexity and cost of the 
engine system.

Regarding exhaust emissions, because ammonia itself contains nitrogen, a 
large amount of fuel NOx  will inevitably be produced in the combustion process, 
but other nitrogen-free fuel will not have this problem, so the NOx  emission of 
the engine fuelled with ammonia fuel is generally much higher, and it is difficult 
to suppress it by simply reducing the combustion temperature. In addition, there 
is a considerable proportion of N O2  in NOx  produced by ammonia combustion, 
which is also caused by the unique reaction path of ammonia combustion. The 
greenhouse effect of N O2  is more than 200 times that of CO2. Therefore, the 
aftertreatment system of ammonia engines could be more expensive than others.

     2.7  METHANE

     2.7.1  resources 

Methane is the main component of natural gas, and biogas, so it is widely dis-
tributed in nature. Natural gas and biogas can be used directly as engine fuels. 
Methane can also be synthesized from hydrogen and CO2.

 C O H CH H O2 2 4 2+ → +
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Similar to ammonia, the source of hydrogen directly determines whether synthetic 
methane is a renewable fuel or not.

     2.7.2  ProPerties 

Methane is a chemical compound of one carbon atom bonded to four hydrogen 
atoms, which is the simplest organic matter and the hydrocarbon with the lowest car-
bon content (the highest hydrogen content). Methane is also a gasoline-like fuel with 
high auto-ignition temperature and high octane number. Methane is gaseous under 
normal temperature and pressure. The mass energy density of methane is higher 
than that of gasoline and diesel. Methane can also be stored by liquification or com-
pression with much less energy and cost compared with hydrogen. The minimum 
ignition energy (0.29 mJ) is slightly higher than that of conventional fossil fuels.

     2.7.3  Benefits 

Compared with hydrogen and ammonia, methane is obviously more suitable as an 
engine fuel. Methane has a high octane number, and its anti-knock performance 
is much better than that of hydrogen. The minimum ignition energy of methane 
is not as high as that of ammonia, and the laminar burning velocity is at the same 
level as that of gasoline. Because the anti-knock performance is better than gaso-
line, methane can be used in spark ignition engines with higher compression ratio 
to achieve higher thermal efficiency. In addition, methane molecule contains only 
one carbon atom, so its CO2 emission in same energy release is about 10% lower 
than that of gasoline. With the same reason, the emission of polycyclic aromatic 
hydrocarbons and soot produced in the process of engine combustion is much 
lower for methane, so it is a relatively cleaner fuel.

     2.7.4  shortages 

The main disadvantage of methane is still that it is a gaseous fuel, so it is still trou-
blesome in the process of methane storage and transportation. Another problem 
with methane is that it itself is a typical greenhouse gas. Therefore, the leakage of 
methane and the high natural gas emissions caused by incomplete combustion of 
the engine will increase the greenhouse effect.

     2.8  METHANOL

     2.8.1  resources 

Methanol can be produced from a wide range of sources, including abundant fossil 
fuels (such as natural gas, coal, oil shale, oil sand, etc.), as well as agricultural 
products and municipal waste, garbage, wood, and various biomass. Methanol in 
most European countries and US is produced from natural gas, while in China it 
is produced from coal.
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Methanal can also be synthesized from hydrogen and CO2.

 CO H CH OH H O2 2 3 2+ → +

The source of hydrogen directly determines whether synthetic methanol is a 
renewable e-fuel or not.

     2.8.2  ProPerties 

Methanol is the simplest alcohol, and the molecular formula of methanol is 
CH3OH. With high auto-ignition temperature and high octane number, metha-
nol is also a typical gasoline-like fuel. In fact, methanol is an excellent fuel for 
gasoline engines. Methanol is liquid at normal temperature and pressure, and its 
density is close to gasoline. The volume and mass calorific value of methanol is 
about half that of gasoline. The latent heat of vaporization of methanol is 1100 kJ/
kg, close to three times that of gasoline. Methanol can be miscible in water in 
any proportion. It is easy to dissolve in gasoline, but difficult to dissolve in diesel. 
Methanol exhibits wide flammability limits (6.7%-36%), and comparable laminar 
burning velocity to gasoline. The minimum ignition energy (0.14 mJ) is also com-
parable to that of gasoline fuel (0.2 mJ).

     2.8.3  Benefits 

Methanol has high octane number, good anti-knock performance, and the vapor-
ization process of methanol can reduce charge temperature, so earlier ignition 
time can be adopted when methanol is used in spark ignition engines and engines 
obtain higher thermal efficiency. The molecule of methanol has only one car-
bon atom, and the molecule contains oxygen, so the potential to generate soot is 
extremely low, which can achieve cleaner combustion compared with gasoline.

     2.8.4  shortages 

The volumetric energy density of methanol is only half that of gasoline, so the 
direct application of methanol in the production gasoline engine will reduce the 
engine power. Methanol has corrosivity. Methanol has strong water absorption, 
and aqueous methanol is easy to oxidize and produce acid, which further increases 
the corrosivity and is easy to cause corrosion and damage to the fuel system. 
Therefore, engines using methanol as fuel need to adopt a special fuel supply sys-
tem to increase the manufacturing cost.

Methanol is a toxic substance to human beings. Methanol combustion is also 
easy to produce irregular emissions such as formaldehyde, and the toxicity of form-
aldehyde and methanol mixture to organisms is further enhanced. The humidity 
of burned gas of methanol is also relatively large, which can make the lubricating 
oil emulsified and denatured. In addition, the high humidity and the high concen-
trations of irregular emissions raise higher requirements for the durability and 
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reliability of the aftertreatment system, which also raises the cost of the aftertreat-
ment system.

     2.8.5  higher alcohol 

Besides methanol, higher alcohol, including ethanol, butanol, and octanol can 
also be used as internal combustion engine fuel. Ethanol can be produced using 
dimethyl ether, hydrogen, and CO2 as raw materials. Butanol can be produced 
from ethanol, and octanol can be produced by butanol. With the increase of carbon 
number, the ignitability of alcohol fuel increases and the octane number decreases, 
and the solubility in diesel increases.16

     2.9  DIMETHYL ETHER (DME)

     2.9.1  resources 

At present, dimethyl ether (DME) can be produced from methanol through dehy-
dration and condensation, so its source mainly depends on the source of methanol. 
The energy consumption and cost of this process are not high. Because methanol 
is a typical e-fuel, dimethyl ether can also be considered as a potential e-fuel.

     2.9.2  ProPerties 

DME is the simplest ether fuel. DME is a colorless, non-toxic gas with a slight ether 
smell. It contains 34.8% oxygen and has no C-C bond. The lower heating value of 
DME is 27.6 MJ/kg, while the ignition temperature is only 512 K. Dimethyl ether 
has good ignitability and cetane number as high as 55 (cetane number of diesel 
generally needs to be more than 50), so it is a typical diesel-like fuel.

     2.9.3  Benefits 

DME can be used as a diesel alternative fuel because of its high cetane number. 
Because DME contains oxygen in its molecule and there is no carbon-carbon 
bond, the soot formation during diffusion combustion is much lower than that 
of diesel. If only combustion process is considered, DME is a very ideal clean 
diesel fuel.

     2.9.4  shortages 

Similar to other gaseous fuels, the main problem of DME is the requirement for a 
specially-designed fuel supply system for gaseous fuels on the engine, which will 
increase the manufacturing cost of the engine. Because DME is suitable for diesel 
engines, the engine needs to equip an in-cylinder high-pressure injection system 
for DME considering the diffusion combustion of diesel engines. The lubricity and 
viscosity of DME are far lower than that of diesel, which is a disadvantage to the 
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establishment of high injection pressure in the fuel system, and also reduces the 
durability of the high-pressure fuel system. In the meantime, DME is corrosive to 
the seal materials of rubber and other fuel systems, so it is easy to cause seal damage.

     2.9.5  PolyoxyMethylene DiMethyl ethers (PoDe)

DME is a gaseous fuel under the standard condition with disadvantages when 
used as a diesel fuel in compression ignition engines. Polyoxymethylene dimethyl 
ethers (PODE) stand for the ethers with the formula of CH O CH O CH3 2 n 3( )  where 
n is the polymerization degree, usually ranging from 1 to 7. Compared with 
DME, PODEs are liquid fuel and generally have higher oxygen content (>40%) 
and cetane number. PODEs are a promising diesel alternative fuel or a green fuel 
additive for diesel. PODEs can also be synthesized from methanol, so it can be 
regarded as a potential e-fuel.

PODEs have different polymers with a degree of polymerization from 1 to 7. 
As the polymerization degree increases, the cetane number, oxygen content, flash 
point, density, viscosity, and surface tension of PODE become larger, as well as the 
melting point and boiling point. When the polymerization degree is higher than 
2, the cetane numbers of PODEs are all higher than 63, which is higher than the 
requirement as a diesel engine fuel. With the polymerization degree of 2 and 3, 
PODEs have flash points within the range of the normal atmospheric temperature 
(between 15 and 25 oC), not fulfilling the safety criterion. If polymerization degree 
is higher than 5, melting points of PODEs are higher than 18.5 oC. Therefore, the 
upper limit of PODE polymerization degree should be at least no higher than 5 
in order to avoid the precipitation in the fuel supply system especially at low tem-
perature conditions. Meanwhile, a polymerization degree higher than 5 is also not 
recommended considering the cost of the feedstocks.17

The ideal polymerization degree range for PODEs should be 4–5 consider-
ing all the aspects discussed before. However, for the present technologies, it is 
difficult to exactly control the polymerization range in industrial production of 
PODEs. PODEs are still produced in the form of mixture with wider polymeriza-
tion degree range rather than 4–5.

     2.10  APPLICATION OF E-FUEL IN VEHICLE 
INTERNAL COMBUSTION ENGINES

The application of e-fuel mainly depends on its ignitability, that is whether it is 
a gasoline-like fuel or diesel-like fuel. Gasoline-like fuels are commonly used in 
spark ignition (SI) engines, while diesel-like fuels are commonly used in com-
pression ignition (CI) engines. For SI engines, the thermal efficiency is relatively 
low and the power range is limited. However, most e-fuels, especially carbon-free 
fuels are gasoline-like fuels. To break the limit of using gasoline-like fuels in SI 
engines, the dual fuel compression ignition mode, which were firstly proposed 
to apply gasoline in high efficiency compression ignition mode, could also be a 
solution for the application of gasoline-like e-fuels in compression ignition mode.18
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     2.10.1  si MoDe engines 

The SI mode is also known as the conventional gasoline engine mode. In SI mode 
engines, fuel is prepared either by low-pressure fuel injection in the intake port 
or by early in-cylinder high-pressure fuel injection, so fuel is fully premixed with 
air before combustion occurs. A spark plug supplies external energy to trigger the 
ignition of the air-fuel mixture, and the mixture is consumed by flame propagation 
from the spark plug to the edge of the combustion chamber.

As a suitable fuel for SI mode engines, the fuel should have gasoline-like ignit-
ability (high octane number), and the fuel should be gaseous fuel or liquid fuel 
with high volatility. Until now, in gasoline-like e-fuels, methanol, ethanol, and 
methane have been applied in production SI engines. Hydrogen, ammonia, and 
other alcohols are still in engine lab test stage.

     2.10.2  ci MoDe engines 

The CI mode is also known as the conventional diesel engine mode. In CI mode 
engines, fuel is injected into the cylinder very close to top dead center, when the 
temperature and pressure in the cylinder is high. In addition to the high ignitability 
of the diesel-like fuel, the fuel ignites quickly after being injected into the cylinder, 
and the injected fuel is consumed by diffusion combustion.

As a suitable fuel for CI mode engines, the fuel should have diesel-like ignit-
ability (high cetane number), and the fuel should have a good lubricity to avoid the 
wear of the high-pressure fuel pump. Until now, no diesel-like e-fuels have been 
applied in production CI engines.

     2.10.3  Dual-fuel ci MoDe engines 

The main obstacle of using gasoline-like e-fuel in CI mode engine is the low ignit-
ability. Dual fuel CI mode solves this issue by applying diesel-like fuel as the igni-
tion sources. In the dual fuel CI mode, gasoline-like e-fuels are injected through 
low-pressure injection in the intake port, while diesel-like fuel (normally diesel) is 
injected in-cylinder with high injection pressures.19

Until now, diesel-methanol dual fuel CI mode engines and diesel-natural gas 
dual fuel CI mode engines have been applied on commercial vehicles in prac-
tical use.

     2.11  SUMMARY AND OUTLOOK

Based on the world energy report 2021 from the International Energy Agency, 
although electrification is a central element in the carbon economy, it is not possi-
ble to electrify everything. Liquid, gaseous, and solid fuels of various types will 
continue to make a major contribution to the global energy mix through to 2050. 
There is a growing role for alternative, low emissions fuels such as e-fuels in all 
scenarios. These play a key role in the achievement of net zero targets, especially 



26 Big Data and Electric Mobility

in sectors where direct electrification is most challenging. Today, 17 governments 
have published low-carbon hydrogen strategies and more than 20 countries are 
developing them.20

However, with the present technology, e-fuels are energy inefficient, with 
approximately 50% of available fuel energy “lost” during the fuel production pro-
cess, compared with about 10% lost when generating and using electricity to drive 
an electric vehicle. The production cost is likely to remain high.21 However, as 
an energy storage medium, e-fuel has advantages in energy density, storage, and 
transportation. If the cost of renewable electric energy continues to decrease in the 
future, the disadvantages of e-fuel in energy efficiency and cost will be gradually 
diluted.

For a long time, the evolution of fuel has played a leading role in the develop-
ment of internal combustion engine technology. In the future, with the increasing 
share of e-fuel in the daily-used fuel, the internal combustion engine will inevita-
bly need technological innovation to adapt to this change. A foreseeable change 
is that the market share of dual fuel compression ignition internal combustion 
engines will increase. At present, in dual fuel compression ignition, the gasoline 
fuel inducing method is still dominated by the port fuel injection, but the port fuel 
injection brings about problems such as limited substitution rate of gasoline-like 
fuel, decreased engine power, and increased unburned fuel. Considering that 
most of e-fuels are gasoline-like fuels, it is unfavorable to the improvement of 
e-fuel substitution rate. Therefore, in the future, gasoline-like e-fuels may also 
be introduced into the cylinder through in-cylinder direct injection to solve these 
problems. Regarding this, marine engines have taken the lead in technology devel-
opment. MAN and Wartsila have successively launched dual fuel compression 
ignition marine engines (Figure 2.4) that can inject both diesel and e-fuel through 
in-cylinder direct injection (dual direct injection technology).22 However, currently 
the cost of this technology is still high, and whether the technology can be applied 
on a large scale in vehicle engines in the future depends on the policy and the 
iteration of relevant technologies.

 FIGURE 2.4  Injection and combustion system of dual fuel marine engine, MAN (left),23  
Wärtsilä (right).24
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       3  Design and Integration 
of Energy Storage 
Devices for Automotive 
Applications 

Yuanjian Zhang and Di Zhao

     3.1  DRIVING CYCLES

As a vehicle fuel economy and driving range certification standardization refer-
ence, driving cycles can truly reflect the real environment of driving conditions, 
which help the design of fuel cell vehicle efficient power system and energy stor-
age device, so as to meet the vehicle performance requirements, reduce component 
degradation, and evaluate and verify the economy and life cycle cost of vehicles. 
This chapter will analyze the differences and connections between driving cycles 
from the category of driving cycles to study the driving cycles suitable for running 
fuel cell vehicles, and discuss the guiding significance of driving cycles for the 
design of fuel cell vehicles.

     3.1.1  classification of Driving cycles 

Driving cycles for vehicle can be divided into two categories: real driving cycles 
and standard driving cycles.

  3.1.1.1  Real Driving Cycles
Real driving cycles can effectively reflect the actual driving environment of a spe-
cific city or region. In order to meet the comprehensive performance of vehicles 
in a specific driving area, it is necessary to generate representative vehicle driving 
cycles with regional characteristics. Generating method of real driving cycles is 
roughly divided into two categories, one is the Markov chain theory applied to 
driving cycles design, the basic idea of which is that the next speed and acceler-
ation state only depends on the current state, regardless of the previous state. By 
collecting data under the real condition and getting the corresponding state trans-
fer matrix, combined with Monte Carlo method or simulated annealing, the pur-
pose of driving cycles generation can be achieved. The other is to apply machine 
learning to driving cycles generation, such as K-mean clustering, support vector 
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machine, decision tree regression, etc., general process of which is a) test route 
selection, b) data acquisition and filtering processing, c) motion segment division 
and dimensionality reduction, d) motion segment classification, and e) motion seg-
ment combination. In order to effectively improve the fuel economy and compo-
nent life of fuel cell vehicles in the specific operating environment and market, it 
is of great significance to study the driving cycles generation technology and guide 
the design of the performance parameters and energy management strategies of 
fuel cell vehicle components.

  3.1.1.2  Standard Driving Cycles
The so-called standard driving cycles represents driving cycles promulgated by 
the authority, with general evaluation standards and regulations. According to the 
driving area and traffic conditions, standard driving cycles can be divided into 
urban driving cycles, suburban driving cycles, high speed driving cycles, aggres-
sive driving cycles and mixed driving cycles, which are characterized by maxi-
mum speed, average speed, acceleration, deceleration, proportion of acceleration, 
proportion of deceleration, proportion of uniform speed, and proportion of idle.

 1) Urban driving cycles
   In the urban traffic environment, traffic congestion, traffic lights, pedes-

trians, and other factors will cause the slow or even frequent parking 
speed of the vehicles. Therefore, the maximum speed and average speed 
of the urban driving cycles are relatively low, while the acceleration and 
deceleration processes account for a relatively large and more radical 
role. Typical urban driving cycles are New York City Cycle (NYCC), 
WVUCITY, and MANHATTAN. The New York City Cycle (NYCC) 
features low speed stop-and-go traffic conditions, which has a max-
imum and average speed of 44.58km/h and 11.41km/h, with a more 
aggressive maximum acceleration and deceleration of 2.682m/s2  and 
2.28m/s2 , respectively. The top and average vehicle speed of the ECE15 
is slightly higher than the NYCC, and the acceleration and deceleration 
is less intense, and the J10 has characteristic data like the ECE15.

   2)  Suburban driving cycles
   Suburban driving cycles consist of low-speed urban driving and medi-

um-high speed suburban driving, often including low-speed parking and 
high-speed parking. Typical suburban driving cycles include UDDS, 
FTP-75, NEDC, J10–15, JC08, WLTP, etc. Their speed and acceleration 
time course are shown in  Figure 3.1 , and the characteristic parameters 
are shown in  Table 3.1 .          

  The FTP-75 (Federal Test Procedures 75) is similarly characterized 
as an extended version of the UDDS (Urban Dynamometer Driving 
Schedule). The FTP-75’s maximum deceleration and deceleration is 
only 1.475 m/s2 , while the acceleration and deceleration process is rel-
atively gentle and does not cover high speed aggressive driving and air 
conditioning on. In order to compensate for these shortcomings, the 
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FTP-75 has added two supplementary driving cycles, SFTP (Supple-
ment Federal Test Procedures): US06 for high-speed aggressive driving 
and SC03 for air conditioning on. The NEDC (New European Driving 
Cycle) is officially used in Europe for emission certification and fuel 
economy testing in light vehicles, is slightly faster but more moder-
ate than the FTP-75. Similar to NEDC ,  J10–15 (Japanese 10–15 Mode 
Cycle) changes less in velocity in a short time, and is more moderate than 
NEDC. Both urban and suburban, the JC08 (Japanese Industrial Stan-
dards Committee 08 test cycle) has a higher top speed than the J10–15 
and travels shorter at a constant speed, replaced by frequent acceleration 
and deceleration processes. In addition, the average vehicle speed of the 
vehicle is kept at 50 km/h before full braking, which also simulates the 
traffic lights such as urban traffic. JC08 was more aggressive than FTP-
75 during acceleration, but more moderate during deceleration. WLTP 
(Worldwide harmonized Light vehicles Test Procedure) is divided into 

FIGURE 3.1 Speed and acceleration time course of suburban driving cycles.
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three categories of Class1, Class2, and Class3, different categories of 
low speed, medium speed, high speed, and super high speed four speed 
interval combination. The vehicle cycle category depends on the vehicle 
power quality than power to mass ratio (PMR). The greater the PMR is, 
the higher the categories, the maximum speed, and the average speed 
will be, and the more radical the driving mode will be. Overall, WLTP 
Class3 is the most radical of the suburban driving cycles.

 3) High-speed driving cycles
  High-speed driving cycles can simulate and evaluate the fuel economy 

of the vehicle when driving at high speed, and the representative driving 
cycle is Highway Fuel Economy Driving Schedule (HWFET). HWFET 
simulates highway driving cycles below 96.4 km/h (60mph) with an 
average speed of 77.58 km/h. The vehicle includes only a single start-
stop process in a single cycle, and the absolute values of maximum 
acceleration and deceleration are mostly less than 0.45 m/s2, with a very 
low average. The mountain driving cycle NREL2VAIL runs for 86.8 
miles in time period of 5692 sec from the city of NREL Golden to the 
city of VAIL. It is also one of the high-speed driving cycles, with the 
mountain slope information as well.

 4) Aggressive driving cycles
  As a supplement to the FTP-75, the US06 has more aggressive speed 

fluctuations and high-speed driving characteristics, thus dividing the 
US06 into aggressive driving cycles. The maximum speed and average 

TABLE 3.1
Technical Specifications of the Suburban Driving Cycles

WLTP

Characteristics M.U. UDDS FTP-75 NEDC J10–15 JC08 Class1 Class2 Class3

Maximum speed km/h 91.25 91.25 120.00 70.00 81.60 64.40 85.20 131.30

Average speed km/h 31.51 25.86 33.60 22.72 24.41 28.47 35.72 46.50

Maximum m/s2 1.475 1.475 1.042 0.806 1.528 0.764 0.958 1.583
acceleration

Maximum m/s2 1.475 1.475 1.389 0.833 1.125 1.000 1.111 1.486
deceleration

Proportion of % 32.8 32.4 23.8 25.9 27.8 29.4
acceleration

Proportion of % 29.3 28.2 17.6 26.4 25.9 27.8
deceleration

Proportion of % 20.9 21.2 34.8 22.3 17.4 30.3
uniform speed

Proportion of idle % 18.0 18.2 23.8 25.4 28.9 12.5



33Design and Integration of Energy Storage Devices

vehicle speed of the US06 are 129.2km/h and 77.2 km/h, respectively, 
and the maximum acceleration and deceleration even reach 3.241 m/s2 
and 2.816 m/s2. Compared with the highest and average speed, the FTP-
75 driving cycle is increased, reaching 108.1 km/h and 39.6 km/h, and 
the maximum acceleration and deceleration increase significantly, with 
2.816 m/s2 and 3.755 m/s2, respectively. Therefore, the LA92 is also 
considered to be an aggressive driving cycle. LA92 has far more accel-
eration and deceleration than US06, and the deceleration process is 
more aggressive, but US06 contains a long high-speed driving range, so 
the average speed of US06 is higher than LA92.

 5) Mixed driving cycle
  In the process of vehicle design and verification, it may occur that the 

existing standard driving cycles cannot fully meet the requirements. 
Therefore, several sections of standard driving cycles are split, spliced, 
and recombined to obtain mixed driving cycles. Typical mixed driving 
cycles include NEDC composed of ECE15 and EUDC and the J10–15 
composed of J10 and J15.

The preceding standard driving cycles are more for light vehicles, 
while World Transient Vehicle Cycle (WTVC) is specifically for heavy 
commercial vehicles. Furthermore, China announced in October 2019 
and implemented CLTC and CHTC in May 2020. In addition to the 
standard conditions classified, there are some transient non-official 
cycles, such as Artemis Driving Cycle on urban, rural, and highways, 
and Hyzem, developed specifically for the evaluation of hybrid vehicles, 
which are complementary to vehicle design and evaluation.

3.1.1.3  Fuel Cell Vehicle Design Considering Driving Cycles
As mentioned before, the operating environment of fuel cell vehicles directly 
affects vehicle performance, such as fuel economy and component life. Studying 
the driving cycles suitable for fuel cell vehicles can guide the design of fuel cell 
vehicle component performance parameters, energy management strategies, and 
fleet operation strategies.

First, the driving cycles of fuel cell vehicles will affect the fuel economy, low 
speed mild driving cycles like ECE15 is beneficial to improve the fuel cell vehicle 
fuel economy. This is because different driving cycles created different vehicle 
running state; the average speed is higher or frequent acceleration and acceleration 
of large driving cycles obviously cause greater energy consumption. In addition, 
the urban driving cycles and suburban driving cycles with relatively large deceler-
ation processes bring greater braking energy recovery potential, and the braking 
energy recovery of vehicles will improve the fuel economy.

In addition, the driving cycles of the fuel cell vehicles will affect the component 
life. Thanks to braking energy recovery, frequent start and stop cities like NYCC 
may be good for vehicle fuel economy, but this may not be good for vehicle com-
ponent life. From the perspective of life, fuel cell system should work under stable 
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load driving cycles. Namely the frequent changes in power demand and start-stop 
may lead to insufficient reactants and seriously affect life, instead of the vehicle 
fuel economy and acceleration performance; therefore, urban driving cycles are 
not conducive to life cycles of fuel cell vehicles, while high speed driving cycles 
are more suitable for extending the service life of fuel cell vehicles.

From the perspective of component performance parameters, the power of the 
fuel cell system should meet the average requirements of real driving cycles or 
standard driving cycles to satisfy the demands of vehicle acceleration performance. 
If the vehicle is only running in urban driving cycles, frequent acceleration and 
deceleration strengthens the role of the auxiliary energy unit. This can lead to the 
fuel cell system being small because of the size of the auxiliary energy unit, which 
not only prolongs the fuel cell life increasing the braking energy but also slightly 
compensates for the low efficiency caused by the low load of the fuel cell system, 
thereby improving fuel economy. For high-speed driving cycles, fuel cell size can 
be appropriately increased and auxiliary energy unit size can be reduced to mini-
mize weight to improve fuel economy. For the aggressive driving cycles with large 
speed changes, the performance and cost of the vehicle should comprehensively 
be taken into account, and the size of the fuel cell and auxiliary energy unit should 
be appropriately increased to minimize the fuel consumption and life degradation 
and reduce the cost on the premise of meeting the performance requirements.

From the perspective of the energy management strategy, the vehicle power 
requirements determined by the driving cycles are further allocated, and the dis-
tribution results will affect the vehicle performance, fuel economy, and compo-
nent life. The degradation of the fuel cell life is related to four bad driving cycles: 
load change, start-stop cycle, idle speed, and high load. In order to extend the life 
of the fuel cell, the areas with little speed change in the driving cycles should be 
borne by the fuel cell, and the other areas should be assisted by auxiliary energy 
units to extend the life of the fuel cell. In addition, the best fuel economy and 
component life can be obtained by using different energy management strategy 
parameters in different driving cycles, which requires a combined driving cycle 
identification technology.

     3.2  TOPOLOGY

The power system of the fuel cell vehicle is mainly composed of the fuel cell sys-
tem, auxiliary energy unit, DCDC, DCAC (Inverter), electric motor, and reducer. 
The auxiliary energy unit can be divided into photovoltaic and other energy gener-
ation units and the energy storage units of battery, supercapacitor, flywheel, super-
conducting magnetic energy storage (SMES), and other storage units.

According to the different combined types (used energy units) of energy 
supply units and energy storage units, fuel cell vehicles can be divided into the 
following types: a) Full FCEV; b) PEMFC+Batt FCEV; c) PEMFC+SC FCEV;  
d) PEMFC+Batt+SC FCEV; e) PEMFC+Batt+PV FCEV; f) PEMFC+FW FCEV; 
and g) PEMFC+SMES FCEV, whose advantages and disadvantages are shown 
in Table 3.2.
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TABLE 3.2
The Classification of FCEVs
Type Advantages Disadvantages

Full FCEV • Less system units and simple • Fuel cells require high power
structure • The dynamic response and relia-

bility of fuel cells cannot meet the 
vehicle requirements

• No brake energy recovery

PEMFC+Batt FCEV • Dynamic response perfor- • The battery has the lowest power 
mance is relatively good density

• Fuel cells can work in good • There is an energy loss in the bat-
condition tery charge and discharge process

• Cold start performance is good • The battery life cycle is short and it 
• Brake energy recovery can be is affected by the temperature

achieved • The battery is limited to the maxi-
• Manufacturing cost and use mum charge and discharge power

cost are low

PEMFC+SC FCEV • Supercapacitors have the high- • Supercapacitors have the lowest 
est power density energy density

• Supercapacitors can achieve • The manufacturing cost is high
rapid charge and discharge

• Supercapacitors have a wide 
operating temperature range

• Supercapacitor charge and 
discharge life cycle is long

PEMFC+Batt+SC • It combines the advantages of • The system is complex, and the 
FCEV batteries and supercapacitors system control and overall layout 

• It can fully ensure the dynamic are more difficult
response performance in cold • The manufacturing cost is high
environment

• Regenerative braking can be 
borne by supercapacitors to 
reduce the number of battery 
charge and discharge cycles

PEMFC+Batt+PV • Clean and silent • Intermittent power output
FCEV • Large in size, the body platform 

needs to be redesigned
• The manufacturing cost is high

PEMFC+FW FCEV • High-speed charging capability • Charging time is long
• High power rating • The energy density is low

• Big and heavy
• High manufacturing cost and use 

cost

PEMFC+SMES • High power density • The energy density is low
FCEV • Long life cycle • Short-term energy storage

• Ultracold environments are required 
to ensure coil superconductivity

• High manufacturing cost and use 
cost
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      3.2.1  full fcev

The power system of full FCEV (Figure 3.2) includes fuel cell stack, hydrogen 
storage bottle, one-way DCDC, inverter, drive motor, and reducer, etc., which only 
has the fuel cell as one energy source, and all the power requirements of the vehi-
cle are borne by the fuel cell, which requires the dynamic response performance 
of the fuel cell system. However, due to factors such as delayed reaction gas supply, 
the dynamic response performance of fuel cells is not excellent, which also causes 
limited acceleration performance such as vehicle acceleration time and climbing 
degree. But the fuel cell can continue to generate electricity with the reaction gas 
supply, so a single fuel cell type also shows a satisfactory driving range. The pros-
pect of a single fuel cell type vehicle is not broad until the key technical issues of 
the cost, reliability, durability, and dynamic performance of the fuel cell system 
are significantly improved.

     3.2.2  PeMfc+Batt fcev

PEMFC+Batt FCEV (Figure  3.2 and Figure  3.3) adds a set of cells to a full 
FCEV. If the battery end voltage matches the DC bus voltage, the bidirectional 
DCDC at the output of the battery is not required. The fuel cell of this type is the 
main power source. The dynamic response performance advantage of the bat-
tery greatly improves the acceleration performance of the vehicle and retains the 
advantage of the fuel cell driving range. However, the matching and control of 

FIGURE 3.2 Power system of full FCEV.
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multiple power sources has become the difficulty and focus of vehicle design, 
including the manufacturing, use and operation, and loss cost caused by compo-
nent performance parameters and energy management strategies. The following 
other hybrid structures also face the same problems. Taking the component perfor-
mance parameter design as an example, the battery capacity of the PEMFC+Batt 
FCEV(Non-plug-in) (Figure 3.2) is small, and the battery has limited auxiliary 
power of the vehicle demand. Therefore, this type is more suitable for intercity 
buses/trucks. And because PEMFC+Batt FCEV(Plug-in) battery capacity is larger, 
the battery needs external charging to get a complete charge and discharge cycle, 
with longer charge and discharge time, but a larger capacity battery provides more 
confidence in urban cycles, and power consumption ratio reduces the use cost. 
Thus, the type is more suitable for cost-sensitive city bus. For passenger cars, the 
PEMFC+Batt FCEV can also be fully competent.

     3.2.3  PeMfc+sc fcev

PEMFC+SC FCEV (Figure 3.4) is similar to PEMFC+Batt FCEV. Compared with 
the battery, the supercapacitor can charge and discharge quickly, with high power 
density, and high charge and discharge efficiency, so the supercapacitor can be 
used to efficiently and quickly recover the braking energy. The vehicle acceler-
ation performance is superior, and the supercapacitor can work in a wide tem-
perature range, greatly improving the cold start performance of the vehicle. But 

FIGURE 3.3 Power system of PEMFC+Batt FCEV(Non-plug-in).
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supercapacitors store a limited energy density, which is lower specific energy and 
more expensive than batteries. This type is also generally applicable to all types of 
passenger vehicles and commercial vehicles.

     3.2.4  PeMfc+Batt+sc fcev

PEMFC + Batt + SC FCEV (Figure 3.5) with battery and supercapacitor coupled, 
can give full play to the advantages of battery and supercapacitor, for which the 
energy demand changes of low frequency and high frequency part are respectively 
borne by both, so the energy output is relatively flat. Parts aging and cost loss can 
be effectively reduced at the same time to make up for the use of super capacitor 
driving range loss. Because the type is more complex, the system control and 
the overall layout is more difficult, and the manufacturing cost may be affected, 
which is also the key point of the type design. Considering various factors com-
prehensively, perhaps this type is more suitable for commercial vehicles with low 
difficulty in space layout.

     3.2.5  others 

PEMFC + Batt + PV FCEV (Figure 3.6) couples PEMFC + Batt FCEV to the 
photovoltaic system, which is also more conducive to the economy of the vehicle. 
Different from auxiliary energy units, the photovoltaic system is an energy supply 

FIGURE 3.4 Power system of PEMFC+Batt FCEV(Plug-in).
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FIGURE 3.5 Power system of PEMFC+SC FCEV.

FIGURE 3.6 Power system of PEMFC+Batt+SC FCEV.
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device, whose power generation is related to the solar radiation intensity, tempera-
ture, and direction, so its output power is intermittent, which is not conducive to 
the vehicle power performance and increases the difficulty of energy management. 
At the same time, the volume of the photovoltaic system is large, and the resulting 
redesign of the body platform is not conducive to the manufacturing cost. There-
fore, this type is more suitable for good photovoltaic conditions and easy layout of 
commercial vehicles.

The flywheels in PEMFC + FW FCEV (Figure 3.7) use high-speed rotation for 
energy storage, but the correct packaging of the high-speed flywheels is crucial 
to store the equipment in case of fracture. In addition, it is difficult to design rea-
sonable energy management strategies, which together constitute the key points 
of design. Because the flywheel uses mechanical devices to store energy, it has a 
high-speed charging capability, high power rating, and is not sensitive to the tem-
perature, which is conducive to the performance of the vehicle performance. How-
ever, along with the mutual conversion process of mechanical energy and electric 
energy, the energy loss is relatively large, and the flywheel has a long charging 
time, a large volume and weight, and the manufacturing cost and use cost are high. 
Therefore, commercial vehicles are more suitable for this type.

PEMFC + SMES FCEV (Figure 3.8) has not yet been commercially used in 
fuel cell vehicles, but this type is a future development direction. Superconducting 
energy storage uses direct current to generate a magnetic field to store electricity 

FIGURE 3.7 Power system of PEMFC+Batt+PV FCEV.
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in the superconducting coil. In order to keep the coil in a superconducting state, 
cryogenic cooling at very low temperature is required, but its superconducting 
properties make it almost no resistance in the conductive process, increasing the 
storage capacity. Superconducting energy storage has super power response char-
acteristics, high power density and a long life cycle, which is beneficial to vehicle 
performance, but the lower energy density and higher manufacturing and use cost 
limit its application in fuel cell vehicles. At present, the geometry optimization 
and reliability of the superconducting coil are still the design difficulties.

     3.3  ENERGY MANAGEMENT STRATEGY AND USING COST

Since there are multiple energy units in the fuel cell vehicle power system, in 
order to achieve the coordinated control of multi-energy units, it is necessary to 
have less fuel consumption and better vehicle performance under the power that 
the driver needs for the vehicle. Appropriate energy management strategies can-
not only reduce the use cost by reducing energy consumption, but also extend 
the service life of components by combining the characteristics of rapid response 
requirements, especially in the start and stop frequency, dynamic power fluc-
tuation, working range, etc. The EMS of fuel cell vehicles can be divided into 
general energy management strategies and energy management strategies consid-
ering component characteristics. Among them, the general energy management 
strategies can be divided into rule-based, optimization-based, and learning-based 
energy management strategies.

FIGURE 3.8 Power system of PEMFC+FW FCEV.
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     3.3.1  rule-BaseD 

In the fuel cell vehicle energy management strategy, the rule-based energy man-
agement strategy is the most common energy management method that can realize 
real-time control. Its core content is to use human knowledge, inspiration, math-
ematical model to form a rule set, which can be a fuzzy rule, state table, or state 
flow chart. Under the transient input, the rule set determines the real-time control 
of the energy unit to meet the vehicle requirements in the most effective way. 
Therefore, the rule-based energy management strategy without prior conditions 
can realize online application, but the rule set is easily affected by heuristic design 
criteria and experiences arbitrariness and poor adaptability to driving cycles. It is 
difficult to achieve optimal control that mainly considers the dynamic response 
performance of the system, the use of the system cost optimization, and limited 
global optimization. The rule-based energy management strategies can be divided 
into two major categories: deterministic rule-based and fuzzy rule-based.

3.3.1.1  Deterministic Rule-Based
The deterministic rule-based uses the determined state table or state flow chart as 
the basis for control to achieve the purpose of coordinated control of multi-energy 
units. The control strategy method based on deterministic rules is simple and easy 
to implement. Its operation speed is fast, with low manufacturing cost. So it is 
often used in commercial fuel cell vehicles, such as state machine, thermostat, and 

FIGURE 3.9 Power system of PEMFC+SMES FCEV.
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power following control. In the application of the fuel cell vehicle energy manage-
ment strategy, each state of the state machine is divided according to the SOC level 
(Figure 3.10a), that is, the state variable is often the SOC of the auxiliary energy 
unit, and the control variable is often the required power of the fuel cell system and 
the auxiliary energy unit. Different from the state machine, the control variables 
controlled by the thermostat are mostly the start-stop state of multiple energy units 
and do not control the performance parameters such as the power of the energy 
unit. The state variable of power is often the SOC of the vehicle demand power and 
the auxiliary energy unit, and the two-dimensional table formed by both is used as 
the control rule (Figure 3.10b).

3.3.1.2 Fuzzy Rule-Based
The energy management strategy of fuzzy rule-based fuel cell vehicle mainly rep-
resents the fuzzy logic control (FLC). Fuzzy logic control is an intelligent control 
method that imitates human’s fuzzy reasoning and decision process behaviorally. It 
includes three basic processes: fuzzy, fuzzy reasoning, and fuzzy solution. Among 
them, the formulation of membership function and fuzzy rules will directly affect 
the control amount of fuzzy logic control. In fuel cell vehicle applications, the 

  

(a)

FIGURE 3.10 Deterministic rule-based EMS: (a) state machine control; (b) power fol-
lowing control.

(b)
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input of fuzzy logic control is often the component SOC and the required power 
of the vehicle, and the output is often the power control amount of the component, 
as shown in Figure 3.11. The fuzzy rules are more insensitive to model uncertainty 
than the deterministic rules, but the fuzzy control process requires faster micro-
controllers and a larger memory.

     3.3.2  oPtiMization-BaseD 

The basic idea of the optimization-based energy management strategy is to select 
reasonable power control to minimize the cost function, which can be divided into 
global optimization and instantaneous optimization. Global optimization requires 
battery SOC, driving cycles, etc., so it is not suitable for real-time optimization; 
instead, by introducing a cost function that only depends on the system parame-
ters in the current state, which is also more suitable for real-time optimization. 
The cost function of the optimization-based energy management strategy usually 
considers the energy consumption and the use cost, and the component dynamic 
response performance is less considered than the rule-based EMS, and the com-
putational amount and complexity is large, and the manufacturing cost is higher.

3.3.2.1  Global Optimization
 1) Dynamic programming (DP)
  Dynamic programming is a numerical method to solve multi-stage deci-

sion problems, where DP is based on the Bellman equation and uses 
a recursive way to reduce the optimization problem to a multi-step 
decision process, as shown in Figure 3.12. Therefore, the DP process 
requires prior knowledge to be conducted. DP has a wide range of appli-
cations, but with the increase of optimization objectives, DP falls into a 
dimensional disaster, and then limits its application in complex systems. 
Using DP to the fuel cell and battery power in PEMFC + BAT type, the 
state variable is battery SOC, the control variable is fuel cell power, cost 
function for the energy consumption of hydrogen consumption, con-
straints include the range of fuel cell and battery power range, battery 
SOC and terminate SOC and battery SOC single step change dynamic 
performance, in order to achieve better economy.

FIGURE 3.11 Fuzzy logic control.
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 2) Pontryagin’s minimum principle (PMP)
  PMP determines the optimal control trajectory by iterative search for 

state transfer in the presence of constraints on some state or input con-
trol. In the application of fuel cell vehicle energy management, the basic 
process is: a) initialization variable; b) define and randomly initialize 
the control variable; c) calculate power demand and discretization; d) 
determine the optimal power distribution control amount using Ham-
iltonian equation; e) repeat c) ~ d) until the termination condition is 
reached; f) evaluate the termination SOC, if the constraint condition, 
b) as the optimal control amount, otherwise repeat a) ~f). PMP-based 
control requires less computational time to obtain the optimal trajectory, 
and in fuel cell vehicles, PMP is an indirect optimization method to 
obtain the forced global problem. That is, under certain assumptions, 
the result of PMP can be regarded as the global optimal solution.

 3) Meta-heuristic algorithm
  Meta-heuristic algorithm is a stochastic search method based on itera-

tive mechanisms to solve optimal or satisfactory solutions to complex 
optimization problems through the understanding of relevant behaviors, 
functions, experience, rules, and mechanism of action in biological, 
physical, chemical, social, and other fields. The meta-heuristic algo-
rithm has the advantages of simplicity, strong applicability, no formula 
derivation, and avoiding local optimal, but it is not universal.

The application of Ant colony optimization in the energy management of fuel cell 
vehicles is shown in Figure 3.13. The search process adopts the distributed comput-
ing method. Robustness is strong, and Ant colony optimization is easily combined 

FIGURE 3.12 State transfer process of DP.
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with other algorithms, but it is slower to converge, easy to fall into a local opti-
mum (local optimal). We solved the problem of power distribution of PEMFC + 
SC vehicles using Ant colony optimization. To maintain the supercapacitor SOC 
at the same level, its cost function is set to the weighted SOC variation quantity. 
Genetic algorithm is also commonly used in fuel cell vehicles, genetic algorithm 
from the random solution, through the adaptive function to evaluate each candi-
date solution, and using selection, crossover, variation, and other operations to 
create the best solution for a technical problem, can effectively explore the target 
parameters, but it is very time-consuming to optimize the parameter value in the 
rule table, such as the membership function in fuzzy logic control. Design and 
the use of the offline rule banks of the GA blur energy management controllers 
to reduce fuel consumption and meet the constraints by minimizing the current 
disturbances present in the FC (Figure 3.14). Similar to genetic algorithms, parti-
cle swarm optimization also does not rely on the assumptions of the optimization 
problem, and can search for candidate solutions in large space, but particle swarm 
optimization is more suitable for continuous nonlinear functions and can solve a 
wide range of constrained optimization problems with small computation time 
and memory. Grey Wolf Optimizer’s optimization process is similar to the genetic 
algorithm, which also uses the fitness function to judge the position of individuals 
and to find the optimal solution for the whole iterative process through the location 
update. The optimal FC reference current for the PEMFC+SC fuel cell vehicles 
was modified using the Grey Wolf Optimizer, as an input for the negative feedback 
regulation of the fuel cell current.

FIGURE 3.13 Application of Ant colony optimization in energy management.
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3.3.2.2  Instantaneous Optimization

 1) (Equivalent consumption minimization strategy (ECMS)
  Equivalent consumption minimization strategy (ECMS) is originally 

developed based on the heuristic concept, through equivalent factors 
to auxiliary energy units into equivalent hydrogen consumption. And 
according to the set energy unit energy priority introduced penalty 
coefficient and common cost function, equivalent hydrogen consump-
tion at a moment to control the operation of parts is to be seen. Since the 
equivalent factor and penalty function are initially set, ECMS achieves 
satisfactory results without prior knowledge of driving cycles, with 
realizable ones, but cannot guarantee the sustainability of charging 
components. Due to the initial equivalent factor of SOC reference track 
has a direct impact on the hydrogen consumption of vehicles, in order 
to improve the near optimality of ECMS and charging sustainability, 
which can be real-time optimization adjustment equivalent factor, put 
forward a method of using DP optimization equivalent factor, while 
maintaining the auxiliary energy unit SOC, to achieve close to the best 
fuel economic performance.

 2) (Model predictive control (MPC)
  Model predictive control can predict future output trajectories and 

calculate control sequences based on certain model past and current 
values to minimize the cost function or error, and MPC therefore 
depends heavily on higher model accuracy, as well as prior knowledge 
of the reference trajectories. MPC mainly includes future prediction, 
rolling optimization and feedback compensation. More accurately, in 
the application of fuel cell vehicle energy management strategy, the 
general steps are (Figure 3.15): a) estimate the future power according 
to the current and historical power; b) calculate the optimal control 
track; c) apply the control amount and feedback the system state; and 
d) repeat the previous steps. The proposed MPC controller is con-
structed as a nonlinear constrained optimization problem and solved 
by dynamic programming methods to achieve the energy consump-
tion minimizing of PEMFC + SC vehicles, FC durability improve-
ment, and supercapacitor SOC maintenance.

FIGURE 3.14 Fuzzy energy management controller based on genetic algorithm.



48 Big Data and Electric Mobility

     3.3.3  learning-BaseD 

The learning-based energy management strategy performs data mining on 
large datasets containing real-time and historical information to achieve opti-
mal control. Learning-based algorithms are well-learned and adaptive, with-
out absolute model knowledge, but creating an accurate database with a direct 
impact on control performance and size is difficult and time-consuming. In the 
application of energy management for fuel cell vehicle energy management, 
there are algorithms such as reinforcement learning, rule-based learning, and 
neural network.

 1) Reinforcement learning
  With the rise of artificial intelligence, reinforcement learning is also 

gradually being applied to the energy management of fuel cell vehi-
cles. The subject of reinforcement learning includes the agent and 
the environment, where the agent and the environment exchange 
the actions and get the corresponding rewards. The agent uses the 
exchanged information learning decision rules to maximize the long-
term accumulated rewards, and finally produces and identifies the goal 
of the best action that can bring the maximum return, as shown in 
Figure 3.16. The reinforcement learning algorithm can independently 
choose the best operation without any prediction and prior knowledge. 
Compared with the rule-based EMS, the reinforcement learning algo-
rithm can provide higher precision optimization results. Compared 
with the optimization algorithm, the reinforcement learning algorithm 
can run online, greatly reducing the computing time and cost. The 
Q-learning and deep deterministic policy gradient (DDPG) in rein-
forcement learning have been widely used in the energy management 
of fuel cell vehicles.

FIGURE 3.15 Block diagram of energy management based on MPC
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  Traditional Q-learning-based reinforcement learning algorithms can 
successfully perform power allocation under low-state, low-action con-
ditions, but often require more powerful computational performance 
when the dimension of the state-action space increases, or faces contin-
uous state-action variable problems. To solve these problems, we pro-
pose a kind of fast learning algorithm based on Q-learning and ECMS 
that improves the convergence rate without affecting the optimality of 
results, a fast Q-learning (SQL) algorithm that adjusts the learning rate, 
a three-level energy management strategy based on improved Q-learn-
ing algorithm to optimize the energy efficiency of electric vehicles by 
designing low-dimensional state-action table and the system efficiency 
optimization by designing double reward function.

 2) Rule-based learning
  Rule-based learning energy management strategies can combine the 

advantages of rule-based and optimization-based energy management 
strategies. The purpose of rule learning is to use the rule learning theory 
based on mathematical algebra logic to achieve the real-time application 
purpose. In the application of energy management in fuel cell vehicles, 
the general process of rule learning is: a) under a certain driving cycle, 
the optimal control sequence was determined by using the offline opti-
mization algorithm; b) to simplify the data set composed of the optimal 
solution; c) to learn and classify the rules using the rule learning algo-
rithm, such as repeated incremental pruning to produce error reduction 
algorithm (RIPPER); and d) to apply the regression algorithm to fit the 
generated rule set and to solve the parameters as shown in Figure 3.17.

 3) Neural networks
  Neural network is an algorithmic mathematical model of distributed 

parallel information processing, similar to actual multi-linked neu-
rons, which minimizes the error between the actual output and the 

FIGURE 3.16 The basic process of reinforcement learning.
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predicted output of the training set by adjusting the interconnected 
relationship between a large number of internal nodes within. The 
adaptive structure of neural networks makes them suitable for energy 
management applications in fuel cell vehicles, but requires extensive 
training data to train the network. Neural network training is used in 
fuel cell/cell car optimal power control sequence, first based on the 
gradient method under different conditions to get the corresponding 
optimal control sequence. Then using neural network training, with 
the optimal power flow allocation between the fuel cell system and the 
battery system as the training object, neural network training is used 
to minimize the total equivalent energy consumption. Neural network 
is also used in the speed prediction module of energy management, 
designing a speed prediction method, which uses the back propagation 
neural network to obtain the initial speed. And the radial basis func-
tion neural network predicts the prediction error, adding these two 
parts to get the final prediction speed.

     3.4  ENERGY MANAGEMENT STRATEGY CONSIDERING 
COMPONENT CHARACTERISTICS

While ensuring fuel economy, in order to effectively extend the service life of 
power system components and reduce the full life cycle cost of fuel cell vehicles, 
the characteristics of power system components should be one of the considerations 

FIGURE 3.17 The application of rule learning in energy management.
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in the design of energy management strategies of fuel cell vehicles, which can be 
started from the following aspects:

 1) Considering component performance benefits
  The multi-energy sources of fuel cell vehicles have different performance 

benefits. Fuel cells can continuously provide high power discharge, but 
their dynamic response performance is poor, and supercapacitors are 
just the opposite. Therefore, when designing energy management strat-
egies, the performance differences of the components should be fully 
considered to achieve vehicle performance and cost optimization. The 
rule-based energy management strategy and the wavelet-based energy 
management strategy in the following.

 2) Considering component degradation
  Considering component degradation in the energy management strat-

egy, on the one hand, the energy management strategy can reduce or 
avoid the loss cost caused by component degradation if the compo-
nent degradation is in the target function. On the other hand, it can be 
updated in real time to make the optimal power control more conducive 
to fuel economy according to the actual component degradation situa-
tion. The following improved ECMS can achieve this goal by real-time 
optimization equivalent factor.

Some of the energy management strategies that consider the component prop-
erties are listed here:

 1) Wavelet-transform-based energy management strategy: In the appli-
cation of fuel cell energy management, wavelet transform can extract 
vehicle demand power low frequency and high frequency part, fuel 
cell, or battery bear low frequency part of the power demand, super 
capacitor bear high frequency part, which can effectively alleviate the 
dynamic fluctuation of fuel cell power, and greatly improve the service 
life of fuel cell and battery. The Wavelet transform is incorporated into 
a rule-based energy management strategy, and it optimizes the rules 
and control parameters of the low-frequency parts offline using the DP 
to further improve the fuel economy (Figure 3.18).

 2) Improved ECMS: The disadvantage of traditional ECMS is that when 
the characteristics of the energy unit change, the deviation between the 
set equivalent factor and the actual optimal equivalent factor will lead 
to a suboptimal solution. Therefore, the optimal solution can be realized 
by considering the degradation characteristics of the energy unit and 
adjusting the equivalent factor to the maximum extent. On the basis of 
the traditional ECMS, an adaptive ECMS was proposed, through the 
fuel cell and cell health state model, with the fuel cell and cell SOH 
value into the equivalent factor equation. Realizing the purpose of 
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adjusting the equivalent factor, with the energy unit degradation, the 
dynamic power change rate of fuel cell can also be adjusted, in order to 
reduce the degradation rate of fuel cell, in addition to the AECMS, the 
SECMS, etc.

In addition, energy management strategies considering component characteris-
tics include stochastic dynamic programming and extremal finding method.

     3.5  FLEET MANAGEMENT AND OPERATING COST

In the design process of the full life cycle of fuel cell vehicles, especially for fuel 
cell buses, the impact of the fleet management mode on the whole life cycle perfor-
mance and cost needs to be considered. In this process, the one-day driving time 
and distance management and scheduling management of the fleet will directly 
affect the vehicle performance and cost. Due to the few studies on fuel cell vehicle 
fleet management at the present stage, this part also includes the fleet management 
of pure electric vehicles and plug-in hybrid electric vehicles in the research scope.

     3.5.1  Daily travel tiMe anD Distance 

At this stage, for fuel cell vehicles, hydrogen cost is higher than charging cost. With 
the increase of daily driving time and distance, in order to achieve the expected 
driving distance, to design the larger auxiliary energy unit capacity, it can effec-
tively improve the fuel economy but also affect the operating cost, and increase 
the purchase cost of the auxiliary energy unit. Although the purchase cost will 
be reduced, but the operating cost and use cost caused by the increased hydrogen 
consumption will also increase. Therefore, determining the optimal daily driving 
time and distance is of certain significance to the full life cycle performance and 
design of fuel cell vehicles.

     3.5.2  scheDuling ManageMent 

Fleet scheduling management is another major factor affecting vehicle perfor-
mance and operating cost. For fuel cell vehicle fleet, scheduling management 

FIGURE 3.18 Application of Wavelet transform in energy management.
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mainly includes the formulation of operation schedule, vehicle scheduling man-
agement, and energy supply scheduling management, etc. The energy supply 
scheduling here includes hydrogenation scheduling and charging scheduling. In 
the process of scheduling and management, it also includes the planning decision 
of the location and number of charging stations and hydrogenation stations, and 
this part is not within the scope of this paper.

The scheduling management of fuel cell fleet can be regarded as a multi-layer 
planning problem. First, determine the team running schedule, considering the 
constraints of team travel time and limited mileage, with the target of small team 
running cost for vehicle scheduling. Next, consider the charging and hydrogena-
tion time and limited distance constraints, with the target of smaller team oper-
ating cost for energy supply scheduling. In general, fleet scheduling management 
affects vehicle performance, such as vehicle fuel economy and component degra-
dation life, as well as vehicle use and operating cost, including transportation cost, 
handling cost, charging or power changing cost, hydrogenation cost, lag penalty 
cost, etc.

Fleet scheduling management can be achieved through modeling methods. For 
the scheduling problem of electric bus, the multi-objective optimization integra-
tion model of single line electric bus operation is established, including smooth 
vehicle departure interval and minimizing vehicle number and total charging cost. 
Constraints include different periods of departure interval, vehicle mileage and 
charging conditions, compared with the existing schedule and sequence sched-
ule, the integration model cannot only effectively reduce the number of vehicles 
and total charging cost, but also significantly improve the stability of departure 
interval, and uniform distribution of vehicle charging cycle in non-peak hours. 
A multi-objective and two-layer planning model is established to jointly optimize 
the vehicle scheduling and charging scheduling of traditional vehicles and new 
energy vehicle hybrid bus teams under the operation conditions of the bicycle field.
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       4  Vehicle Energy Storage 
Devices and Their 
Second-Life  
Applications 

Yuanjian Zhang and Di Zhao

Compared to pure electric vehicles, the manufacturing cost and using cost of fuel 
cell vehicles are higher at present. In order to reduce the full life cycle cost of fuel 
cell vehicles, improve market competitiveness, and accelerate the commercializa-
tion process, on the premise of ensuring the performance of fuel cell vehicles, the 
design of fuel cell vehicles considering component performance parameter, com-
ponent degradation, and second-life applications is particularly important. This 
chapter will start from the performance parameters of common powertrain com-
ponents, such as fuel cell, battery, and supercapacitor, analyze the impact of com-
ponent performance on vehicle performance and manufacturing cost, and explore 
the prediction method of component remaining service life and the way to improve 
second-life value from the of degradation mechanism and factors, so as to evaluate 
and optimize component parameters and energy management strategies.

     4.1  FUEL CELL

     4.1.1  PerforMance anD Purchase cost of fuel cell 

Fuel cell used in vehicles is mainly proton exchange membrane fuel cell (PEMFC). 
PEMFC reactor is composed of several single fuel cells in series, combined with 
the auxiliary system to form the fuel cell system. The electromotive force of the 
fuel cell system is inversely proportional to the current density, and due to the 
existence of the auxiliary system, when the net power is very small, the system 
efficiency is relatively low, as shown in Figure 4.1.

The performance of the fuel cell system is mainly characterized by the electric 
momentum, system net power, system efficiency, and hydrogen storage quantity. 
They not only directly determine the performance of the vehicle, but also deter-
mine the manufacturing cost of the vehicle. Further, the voltage level and one-way 
DCDC determined by the fuel cell stack series number should match the DC bus. 
In addition, because the fuel cell system is the main energy source of fuel cell 

https://doi.org/10.1201/9781003302827-5
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vehicles, the maximum net power determines the ultimate performance of the 
vehicle. However, higher maximum net power also implies increased manufactur-
ing costs, as the fuel cell system constitutes a significant portion of the cost among 
power system components. Therefore, the reasonable selection of fuel cell system 
parameters on the vehicle manufacturing cost is huge. The vehicle performance 
changes caused by different fuel cell system performance parameters have been 
studied, and the results are shown in Figure 4.2. For power performance, with 
the increase of the maximum net power of fuel cell, the vehicle maximum speed 
increases and acceleration time decreases. This is because the vehicle power in the 
early energy unit maximum power makes it worthwhile to improve the additional 
manufacturing cost of fuel cell system power output. However, when the maxi-
mum net power is further increased, the drive motor will reach its performance 
limit, increasing net power instead of vehicle performance improvement. This will 
also result in mass maximum speed reduction and acceleration time. For econom-
ics, higher system efficiency and greater hydrogen storage clearly bring in longer 
driving miles, but it also means higher manufacturing cost. Therefore, the fuel 
cell performance design should take into account both vehicle performance and 
component procurement cost.

By 2030, the cost of fuel cell systems is expected to fall from 30 $/kW (500,000 
vehicles/year), making it possible to reduce the cost of hydrogen storage bottles 
to 8 $/kWh by changing fiber materials and manufacturing methods. According 
to a 2018 report issued by American Strategic Analytics, the cost of fuel cells 
decreases with higher annual production, fluctuating between 1,000 and 500,000 
units, and the cost of fuel cell systems is between 181.07 and 44.58 $/kWnet.

FIGURE 4.1 Fuel cell performance.
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     4.1.2  fuel cell DegraDation characteristics 

4.1.2.1  Degradation Mechanism
The degradation of the fuel cell system is mainly reflected in the degradation of the 
membrane electrode aggregate, which is manifested by the reduction of voltage or 
power. Therefore, this part focuses on the degeneration of membrane electrode col-
lections. From the perspective of degradation pathway, the degradation of fuel cell 
system can be reflected in both chemical degradation and mechanical degradation.

Chemical degradation

Due to the decline of the membrane electrode aggregate performance caused 
by the harmful substances produced or free radicals from the cathode and 
anode in the process of electrochemical reaction, the chemical degradation 
of the membrane electrode aggregate takes place. The typical free radicals 
include peroxide, carbon monoxide, etc., which will cause anode poisoning. 
In addition, the common chemical degradation also includes Pt sintering and 
dissolved carbon carrier corrosion.

Mechanical degradation

The mechanical degradation of the membrane electrode aggregate is caused by 
performance decline or membrane failure due to pressure, mechanical stress, 
humidity, thermal stress, reaction gas supply, and working state. Due to manu-
facturing defects, such as excessive or uneven pressure caused by mechanical 
degradation, it may cause early failure of the fuel cell system. In addition, 
if the fuel cell system experiences thermal cycle and humidity cycle, it may 
cause additional mechanical stress, membrane thickness drop, cracking, tear, 

FIGURE 4.2 Influence of fuel cell performance on vehicle performance.
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and perforation. When there is MEA perforation, hydrogen and oxygen in the 
electrode catalyst surface cross and react, and fuel cell voltage will quickly 
drop down, causing battery polarization.

4.1.2.2  Degradation Factors
In addition to the fuel cell system degradation caused by manufacturing defects, 
water management, thermal management, gas management, and working state 
management are the main factors affecting the chemical degradation and mechan-
ical degradation of the fuel cell system, which is closely related to the fuel cell 
system design and the fuel cell vehicle energy management strategy design.

Effective water management is essential to prevent issues such as poor proton 
conductivity, high membrane resistance, and membrane tearing caused by either 
membrane drying or flooding. Since almost all humidification and generated water 
exit through the cathode outlet, liquid water often accumulates in the catalyst layer 
and the gas diffusion layer, hindering the delivery of oxygen and hydrogen to the 
reaction surface. This also leads to the coverage of active catalyst sites and the 
formation of larger water channels in the polymer electrolyte, which accelerates 
catalyst degradation. Consequently, a voltage drop occurs, leading to a significant 
decline in fuel cell performance and irreversible material degradation.

As with water management, thermal management can maintain thermal balance 
during the electrochemical reaction of the fuel cell system. When the membrane 
is completely hydrated, the increased reactor temperature will cause the average 
battery voltage to increase; otherwise it will cause a sharp drop in the reactor 
voltage so the appropriate operating temperature can guarantee the performance 
of the fuel cell system. Extremely high temperature will accelerate the degradation 
of the catalyst and the membrane, while extremely low temperature will affect 
the progress of electrochemical reactions and may cause flooding, intensifying 
the degradation if the fuel cell is exposed to sub-zero temperature for a long time.

The main purpose of gas management is to provide appropriate hydrogen 
and oxygen pressure to improve the efficiency of fuel cell systems and avoid gas 
shortage. Lack of gas is one of the most important reasons of proton exchange 
membrane fuel cell life decay, while lack of oxygen will lead to carbon carrier 
corrosion, battery inversion, and unequal current distribution of a series of serious 
consequences. And excessive oxygen will lead to auxiliary system power increase, 
lower net output power, while lack of hydrogen will lead to carbon carrier corro-
sion, platinum particles agglomeration, and irreversible degradation of the anode.

Working state management is to make the fuel cell system work in a relatively 
stable and efficient state, which is related to the fuel cell load change cycle, start 
and stop cycle, no-load time, and high load time. Frequent changes in work loads 
can lead to gas scarcity and accelerate the degradation of fuel cell systems, while 
long periods of high-load work can also cause it. Frequent starting and stopping 
of the fuel cell cycle, especially when the catalyst is exposed to reverse current 
conditions, can lead to catalyst degradation. However, if the fuel cell is stopped 
and the voltage quickly disappears, the impact of the start-stop cycle on the lifes-
pan of the fuel cell can be ignored. But passing the shutdown of the residual gas 
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in the flow field will make it difficult to eliminate the voltage quickly and com-
pletely. Since the reactant consumption is zero under no-load conditions, this will 
greatly increase the probability of the cathode and anode gas crossing, resulting 
in higher rates of membrane degradation. Therefore, when designing the energy 
management strategy of fuel cell vehicles, the fuel cell system degradation caused 
by frequent and large load changes, frequent start and stop, long idle speed, and 
high load should be avoided to the maximum extent, so as to reduce the loss cost 
and the second-life application cost.

4.1.2.3  Remaining Useful Lifetime Prognostics
Lifetime prognostics aims to predict future states using historical and current per-
formance data, but accurate life prediction remains challenging due to the high 
nonlinearity of the component system. Fuel cell life prediction methods include 
data-driven approach, model-driven approach, and hybrid approach, in which the 
hybrid approach is a combination of the first two approaches, with the advantages 
of both.

 1) Data-driven approach
  Data-driven approach can study the degradation rules of fuel cell 

systems from historical operating data obtained by sensors and build 
empirical or semi-empirical mathematical models through statistical 
methods or artificial intelligence technologies to predict the fuel cell 
system degradation. Because data-driven approach does not use phys-
ics-based specific models, but rather builds mathematical models or 
acquires weight coefficients based on training, it is more flexible and 
applicable, but must have historical data and typical operational data. 
Data-driven approach can be divided into statistics-based and artificial 
intelligence technologies.

 2) Model-driven approach
  The model-driven approach can construct accurate physical and math-

ematical models from the degradation behavior of the fuel cell system, 
and the model can target the multi-physical field, multiphase, and mul-
tiscale of the fuel cell system. The model driven approach is able to 
represent the complex and nonlinear relationships between the data, 
and it is relatively difficult to build accurate mathematical models to 
predict the decay on the premise that the degradation principle of the 
fuel cell system is not fully understood. The modeling objects of the 
model-driven approach can be the catalytic layer, the proton exchange 
membrane, and the diffusion layer.

     4.1.3  seconD-life aPPlications of fuel cell 

Secondary recycling after end of life (EoL) is considered to be one of the effective 
ways to reduce the fuel cell vehicle life cycle cost and improve market competitive-
ness. EoL of fuel cell can be defined from two aspects. One is that the fuel cell no 
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longer meets the requirements, including power density, hydrogen consumption, 
and system efficiency. The second is a definitive end of life threshold, for which 
DoE defines the fuel cell EoL as a 10% loss of initial performance. When fuel 
cells reach the end of their life cycle, the main second-life application methods are 
overall recycling and material recycling.

Overall recycling of fuel cell system

The overall recycling of the fuel cell system is the overall transplantation of the fuel 
cell system from the retired vehicles to the second-life application sites. Before 
the second-life application, not only to the fuel cell system performance eval-
uation but alsothe second-life application demand performance parameters 
to match. These determine the second-life application value of the fuel cell 
system. Therefore, when designing fuel cell vehicles, the fuel cell performance 
degradation and second-life application of performance optimization should 
be considered. This may be done by considering the following points:

 1) Reduce fuel cell degradation
  The degree of fuel cell degradation directly affects the feasibility of the 

fuel cell with overall recycling. Therefore, in order to meet the require-
ments of fuel cell performance in the second-life application scenario, 
it is necessary to reduce the performance degradation of fuel cell from 
the perspective of vehicle design, which echoes the fuel cell degradation 
mentioned previously. When taking into account the external factors of 
the fuel cell, degradation is associated with load changes, start-stop, 
no-load, high-power loads, and air pollution. Therefore, according to 
the vehicle performance requirements and driving cycles, component 
parameters and energy management strategies should be reasonably 
designed to reduce fuel cell degradation. Looking at the internal factors 
of the fuel cell, either a continuously high operating temperature or a 
continuously dry polymer film can cause some damage to the fuel cell, 
which might cause performance degradation. Therefore, by the rational 
design of the fuel cell hydrothermal management system, its running 
time should be strictly reduced under dry conditions, while real-time 
of the fuel cell system for hydrothermal balance should be monitored. 
And to reduce the degradation, the value of second-life application 
should be improved.

 2) Performance optimization considering second-life applications
  The performance parameters of the fuel cell system should be fit with the 

required parameters of the second-life application scenarios to reduce the 
transplantation and secondary development cost. Therefore, in the design 
process of vehicles, especially in the design of component performance 
parameters, the constraints of the proposed application scenario can be 
taken into account in the constraints of the optimization of component 
parameters when the vehicle performance requirements are met.
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Material recycling of fuel cell system

End plates and fastening bolts in fuel cell stack are made of ordinary steel and 
alloy and can be directly recycled. The simple reuse of membrane electrode 
aggregate MEA is unrealistic because fuel cell failure or degradation is usually 
caused by MEA, especially membrane degradation caused by dehydration, 
pinhole, or pollutant accumulation. So physical or chemical recycling can be 
used with MEA materials, mainly platinum group metals, rare earth elements, 
and polymer film. The recovery process of membrane electrode aggregate 
can be summarized into four kinds, namely a) high temperature combustion 
treatment; b) acid dissolution treatment; c) recovery treatment based on 
electrochemical process; and d) alcohol treatment. Recycling Pt from MEA 
can reach a 76% recovery rate, and the polymer film recovery rate is nearly 
100%, but whatever process is used, there are still challenges in removing 
trace elements, which also increases the second-life application cost to some 
extent. Therefore, in the design process of fuel cell vehicles, the pollution of 
harmful substances to the fuel cell system can be reduced by purifying the 
reaction gas and ensuring the consistent pretension force of the fuel cell stack 
so as to achieve the reduction of the material recovery cost in the process of 
second-life application.

     4.2  BATTERY

     4.2.1  PerforMance anD Purchase cost of Battery 

Lithium-ion batteries are widely used in electric vehicles. The main performance 
indicators of the battery include charge state SOCbatt, open-circuit voltage Uocv_batt  
V( ), charge and discharge internal resistance Rbatt  Ω( ), capacity Cbatt  Ah( ), etc. 

Because the vehicle battery is connected in series and parallel, the performance of 
the battery pack is related to the combined form.

Compared with fuel cell performance parameters design, cell performance 
parameters can also affect the component degradation process. When the battery 
capacity is larger, the battery can output power, fuel cell system maximum net 
power can be smaller, and the dynamic response to fuel cell system performance 
requirements and manufacturing cost is more favorable. With the longer the fuel 
cell life, large capacity battery means higher manufacturing cost, so more com-
ponent parameters combination optimization will be needed, in order to seek the 
lowest total manufacturing cost, which will be introduced in detail later. The vehi-
cle performance changes caused by different battery performance parameters are 
also studied (Figure 4.3). When the number of battery packs connected in par-
allel increases, thanks to the increased maximum capacity of the battery, with 
the higher capacity increasing the maximum speed and reducing the acceleration 
time, the maximum driving range in the battery mode increases. When the inter-
nal resistance of the battery pack increases, the output power decreases, and the 
energy loss increases, resulting in the reduced maximum speed, the increased 
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nonlinear acceleration time, and the reduced driving range. When the internal 
resistance of the battery is large, the acceleration time increases rapidly.

According to the 2019 Bloomberg NEF Market report, lithium-ion battery 
packs are currently priced at 156 $/kWh. In 2021, the price of lithium-ion batteries 
fell from 1,160 $/kWh to 156 $/kWh, and it is expected to fall to 62 $/kWh by 
2030. The price of lithium-ion batteries is predicted to fall from 257 $/kWh in 
2018 to 143 $/kWh in 2028.

     4.2.2  Battery DegraDation characteristics 

4.2.2.1  Degradation Mechanism
The degradation of lithium-ion batteries is caused by the irreversible changes of 
the electrolyte, anode, and cathode characteristics, as well as the structure of the 
battery use components. The specific degradation modes include the lithium-ion 
loss, the loss of anode and cathode active materials, and the electrolyte loss. The 
main degradation mechanism is shown in Figure 4.4. In terms of graphite anode 
lithium-ion batteries, the aging process of the battery is divided into three stages. 
Stage 1: During the previous charge and discharge cycles, the surface of the graph-
ite electrode forms a passivation protective layer of the solid electrolyte interface 
membrane SEI, which will lead to a rapid decline in the battery capacity, espe-
cially in the first life cycle. Since the SEI layer allows only lithium ions to pass 
while blocking electrons, it helps slow down the degradation of the electrolyte, 
allowing the battery to stabilize thereafter. Stage 2: With the increase of battery 
charge and discharge cycle times, lithium ion insertion and stripping process will 
lead to electrode volume change, resulting in SEI membrane rupture and graphite/
lithium cobalt oxide electrode surface fragmentation, lithium graphite, and elec-
trolyte contact and reaction between SEI membrane generation and thickening. 
At the same time, due to the fact that SEI membrane thickening diaphragm pore 
blockage causes uneven current distribution and lithium plating, these may couple 
side reaction process causing lithium ion and electrolyte loss. Because the battery 

FIGURE 4.3 Influence of battery performance on vehicle performance.
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capacity is directly determined by the active substance and lithium ion content, the 
battery capacity will continuously decrease and the internal resistance will con-
tinuously increase, and the battery performance tends to decline linearly. Stage 3: 
When the cycle number increases to near end of life, SEI film has completely 
covered the carbon particles on graphite electrode, increased mechanical stress 
will cause graphite loss (electrode disintegration and contact loss between carbon 
particles), collecting fluid degradation (contact loss between fluid and carbon par-
ticles), adhesive degradation (contact loss between adhesive and carbon particles), 
resulting in the rapid loss of active material, swift decline in capacity and internal 
resistance, and battery performance with nonlinear decline.

4.2.2.2  Degradation Factors
The degradation process of lithium-ion battery is determined by both the battery 
design method and the battery working state.

 1) Battery design method
  Design of appropriate battery materials, cell module parameters, bat-

tery structure combined with suitable scenarios of fuel cell vehicles can 
reduce the battery manufacturing and procurement cost, use cost, loss 
cost, and the cost of second-life application.

  Electrode material: The performance of lithium-ion batteries depends 
on the various characteristics of internal materials. Reasonable design 
of battery materials can effectively reduce the side reactions inside the 
battery to improve the battery life. Studies have shown that the for-
mation of the SEI membrane that determines the battery degradation 
is highly correlated with the electrode material, and that the graphite 
anode will lead to the formation of the SEI membrane, while lithium 
titanium oxide (LTO) will not. In addition, the volume change of the 

FIGURE 4.4 Main degradation mechanism of lithium-ion battery.
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lithium iron phosphate (LFP) cathode is less than that of the lithium 
manganese oxide (LMO), so its structural deformation is also less.

  Battery module parameters: From the review of the battery degra-
dation mechanism, it can be seen that the battery module parameters, 
such as the thickness and proportion of the anode and cathode active 
materials, porosity, particle size, and electrolyte composition directly 
affect the mechanical stress and side reactions inside the battery, thus 
affecting the battery life. In addition, the battery performance param-
eters determined by the battery module parameters also affect the life. 
The C / LiCoO2 battery is tested in the range of rated voltage, and the 
results show that the capacity degradation also increases with the maxi-
mum voltage of the battery.

  Battery structure: The inhomogeneity of the battery structure may 
cause lithium plating in small characteristic areas, and the resulting 
lithium ion loss will rapidly change the electrode balance, resulting in 
divergent loss of active materials and lithium ions. This can cause a 
sudden drop in capacity. In addition, the battery structure determines 
the current distribution and temperature distribution inside the battery, 
and a large number of uneven temperature rises and uneven current and 
temperature distribution will affect the battery life.

 2) Battery working state
  Battery working state also affects the battery degradation, which is often 

coupled between each state. With these working states including tem-
perature, charge and discharge rate, state of charge, discharge depth and 
overcharge and overdischarge, through the reasonable design of energy 
management strategy of fuel cell vehicles, the life brought by the battery 
working state degradation can be effectively avoided.

  Temperature: Capacity degradation has a strong correlation with tem-
perature. With the increase of temperature, the internal side reaction 
of the battery accelerates, especially the continuous generation and 
thickening of the SEI film. The more serious the capacity decay is, the 
increase of internal resistance brought about by battery degradation 
also further aggravates the temperature rise. If the temperature is too 
high, it may trigger a thermal runaway. When the battery works at a low 
temperature, the lithium-ion deposition on the negative electrode will 
increase the loss of lithium ion, and the nonlinear area of the battery 
degradation will appear earlier, seriously shortening the life cycle of 
the lithium-ion battery. Therefore, the battery life decay can be slowed 
down by appropriately increasing the battery temperature before the 
nonlinear characteristic occurs.

  Charge and discharge rate: Under the low charge and discharge rate, 
the experimental results show that the capacity loss is affected by time 
and temperature, and under high charge and discharge rate, the influence 
of charge and discharge rate, high discharge rate capacity degradation, 
this may be because the high charge and discharge rate brings fatigue 
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and damage of active material crystal structure and faster internal side 
reaction.

  State of charge, depth of discharge and overcharge and overdis-
charge: When the battery SOC is high or overcharged, too low anode 
potential increases the side reaction rate such as SEI membrane thick-
ening, and lithium deposition may occur; when the battery SOC is low 
or overdischarged, although the anode potential is higher than the cath-
ode potential is conducive to the battery life, too low SOC will cause 
the corrosion of the anode copper collector fluid (anode copper current 
collector) and the cathode active material structure will collapse (disor-
dering), which will greatly affect the battery life. However, even more 
unfortunately, battery degradation will lead to continuous overcharging, 
which exacerbates battery degradation. Furthermore, monomer cells 
cycling at DOD greater than 50% were shown to reach a defined end-of-
life state faster than at lower DOD. Since these mechanisms rely on bat-
tery potential, from the perspective of vehicle design, especially in the 
design of energy management strategy, it is necessary to consider both 
battery life and vehicle performance requirements, design a reasonable 
working range for the battery, delay the nonlinear aging characteristics, 
and prolong the life of lithium-ion battery.

4.2.2.3  Remaining Useful Lifetime Prognostics
As with the fuel cell life prediction method, the residual service life prediction of 
the battery can also be divided into data-driven method, model-driven method, 
and fusion approach/hybrid method.

 1) Data-driven approach
  The data-driven approach can be divided into data-driven method based 

on statistics and data-driven method based on artificial intelligence 
technology.

  Data-driven method based on statistics: Data-driven method based 
on statistics can establish the mapping relationship between the remain-
ing lifetime RUL and the battery properties, such as the exponential 
and logarithmic types. Here the battery characteristics can be capacity, 
internal resistance, and stress factors, such as temperature, charge state, 
charge and discharge ratio, discharge depth, etc. Statistics-based data-
driven method is often combined with the filtering algorithm, such as 
the extended Kalman filter, unscented Kalman filter (Unscented KF), 
particle filtering, unified particle filter (UPF), Bayesian Monte Carlo 
method, etc., to update the model parameters according to the latest 
battery data. To achieve higher prediction accuracy and stability, this 
method is also known as the adaptive model of update parameters.

  In the application of battery degradation model, data-driven method based 
on artificial intelligence technology can be support vector machine, rele-
vance vector machine (RVM), support vector regression (SVR), Gaussian 
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process regression (GPR), artificial neural network, autoregressive inte-
grated moving average (ARIMA), fuzzy logic learning system, etc.

 2) Model-driven approach
  The modeling starting point of model-driven approach can be the mech-

anistic models and equivalent circuit models of battery degradation. 
The mechanical model can be built based on the battery electrochemical 
reaction process, combined with the reaction kinetics and the porous 
electrode theory, and the equivalent circuit model can be established by 
generating a combination of circuit elements with the same electrical 
behavior as the battery.

 3) Fusion approach/hybrid approach
  Fusion approach/hybrid approach can leverage the advantages of both 

data-driven methods and model-driven methods. To overcome the lim-
itations of an empirical model of life cycle, based only on equivalent cir-
cuits, an attempt to couple the conventional empirical model of capacity 
loss with a Newman porous composite electrode model containing elec-
trochemical reaction dynamics and material/charge balance can be used 
to estimate battery life cycle for specific applications.

     4.2.3  seconD-life aPPlications of Battery 

Most scholars believe that when electric vehicle batteries degenerate to 70–80% 
of its initial capacity, with power reaching 50% of the initial value (namely 100% 
impedance increment), they are at the end of its life, no longer suitable for vehicle 
energy storage units, but some scholars believe that the battery scrapped to the 
state that it will no longer meet the driver’s daily travel needs is more accurate. 
When the battery reaches its EoL, there is an opportunity to reuse the battery in 
fixed applications with low performance requirements to produce greater social 
and economic benefits, while avoiding the environmental pollution and resource 
waste caused by landfill recycling, which is also known as the second life. The 
secondary use of fixed applications can be a commercial and residential power 
grid standby energy storage or regional regulation system, photovoltaic and wind 
renewable energy power station power balance application, smart grid fast charging 
stations, etc. The secondary battery has shown that together with the integration 
of photovoltaic renewable energy, in addition to reduce the electricity cost of the 
end user because of the battery price and the reduction of investment cost. In the 
second-life application process of the battery, the performance index of the single 
battery and the battery pack at the end of the first life cycle will affect the second- 
life application performance. Therefore, in the process of vehicle design, the follow-
ing points should be started to maximize the second-life application value after the 
end of the first life cycle:

 1) Reduce battery degradation
  After the end of the first life cycle of a fuel cell vehicle, the lower the 

degradation degree of batteries, the higher the value of second-life 
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application. The study shows that for the individual cells with different 
degrees of degradation, the battery capacity of the degradation turning 
point decreases rapidly, the DC internal resistance increases rapidly, and 
the aging trend will not be slowed down in the lower demand of second- 
life applications. Therefore, in the design of the vehicle during the first 
life cycle period, the degradation of the battery or super-capacitor influ-
ence factors should be fully considered to minimize the degree of deg-
radation during the second-life application. The degradation of batteries 
is related to component performance, energy management strategy, and 
single battery degradation characteristics. In terms of component per-
formance, fuel cell battery combination and power level, voltage level 
and power level should be reasonably designed in combination with 
component degradation characteristics and operating environment dif-
ferences to reduce degradation.

 2) Reduce the degradation difference of single cell
  Second-life application batteries must be split and recombined to meet 

the new operating environment requirements, and the difference of sin-
gle cell degradation during the first life, will greatly increase the match-
ing cost of single cells during second-life application. If the consistency 
of the single battery is poor during second-life application, the available 
capacity of the battery pack mainly depends on the minimum capacity 
of the battery pack, and the battery with poor consistency is easy to 
overcharge and discharge, leading to serious safety problems. There-
fore, in the design process of fuel cell vehicles, the status detection of 
single cell can be done well to reduce the degradation difference of sin-
gle cell, which can reduce the cost of second-life application.

 3) Monitor battery degradation data
  Battery degradation data monitoring is a prerequisite for reasonable 

matching of single battery second-life applications. At the same time, 
accurate periodic and calendar aging characteristic data is the basis for 
forming and optimizing the effective second-life application system 
control strategy. The retired battery is applied to the smart grid electric 
vehicle fast charging station, by analyzing the correlation between SOC 
interval and the first life cycle aging, using two replacement battery pack, 
to realize the optimal SOC operating range control, and the battery pack 
discharge rate, second-life application of battery life and grid stability 
and the relationship between battery temperature and internal resistance 
as the basis for improving the second-life application control strategy. 
Therefore, in the design of fuel cell vehicles, monitoring the degradation 
data, such as battery pack capacity and internal resistance changes can 
accurately understand the influencing factors and degree of degradation 
of batteries, so as to provide guidance for the matching and control strategy 
optimization of second-life application and improve the value of second- 
life application.
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     4.3  SUPERCAPACITOR

     4.3.1  PerforMance anD Purchase cost of suPercaPacitor 

Supercapacitors is divided into electric double-layer capacitors, Pseudo-capacitors 
and hybrid supercapacitors. Currently, the supercapacitors commercialized in fuel 
cell vehicles are double-layer capacitors, so this paper only studies the commonly 
used double-layer capacitors based on graphite and organic electrolyte. Similar to 
lithium-ion batteries, the main performance indicators of supercapacitors include 
energy state SOEsc, open-circuit voltage Uocv_sc  V( ), charge and discharge internal 
resistance Rsc Ω( ), and capacity Csc  (F). When the supercapacitors charge state 
SOCsc drops from 1 to 0.5, the energy state SOEsc drops from 1 to 0.25. At this 
time, the supercapacitors should not be further discharged, so the working range 
of the supercapacitors charge state is generally controlled above 0.5, which is of 
great significance to the design of energy management strategy.

The supercapacitor performance metrics can also affect manufacturing cost, 
vehicle performance, and component life. Supercapacitors can provide large 
changes of power demand in a short period of time, so the larger its capacity, the 
lower the dynamic response performance of fuel cell system and battery require-
ments, which is almost with the influence of the same rules. In addition, the wide 
working temperature range of supercapacitors makes the vehicle cold start per-
formance better, but the supercapacitors manufacturing cost is higher than the 
battery.

In 2019, supercapacitors are currently priced at 8,000-10,000 $/kWh and 
8–12$/kW, as compared to 250$/kWh batteries.

     4.3.2  suPercaPacitor DegraDation characteristics 

The degradation of supercapacitors is mainly manifested in the increase of capaci-
tor loss, storage energy loss, and equivalent series resistance. When the equivalent 
series resistance of supercapacitors usually increases to twice its initial value or 
when the capacitor is less than 80% of its initial value, the manufacturer defines it 
as defective, and 80% of the capacitor loss is always reached faster than the inter-
nal resistance double. Supercapacitors age more on power density, so aging super-
capacitors can again serve applications that do not have high power requirements.

4.3.2.1  Degradation Mechanism
The fabrication process of the supercapacitor electrodes causes the residue of 
impurities on the electrodes. These impurities may be metal impurities and sur-
face functional groups, etc. During the cycle of supercapacitor charge and dis-
charge, surface impurities will react with the electrolyte, thus, producing solid and 
gas products and causing electrolyte loss. At the same time, solvent decomposition 
caused by overvoltage, electrolyte evaporation caused by high temperature, and 
the electrolysis of trace amounts of water in the electrode can also lead to the 
gaseous products. The blockage of the electrode pore by the solid product and the 
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adsorption of the gas product by the electrode reduces the contact area between 
the electrode and the electrolyte. The Cathe surface area loss of porous activated 
carbon electrode can reduce porosity and electrolyte conductivity. Thus, it causes 
the loss of the capacitance and energy. These solid and gas products may also clus-
ter in the diaphragm, preventing the migration of the ionic charges. In addition, 
the increased internal pressure caused by the gas product will cause electrode 
cracks and structural changes in the supercapacitor, damaging the fluid collector. 
Meanwhile, the solvent decomposition will produce free radicals and further fluo-
ridation, resulting in a reaction with the fluid collector and causing further damage 
to the fluid collector. The preceding processes together trigger an increase in the 
contact resistance of the electrolyte, the contact resistance between the carbon 
layer and the fluid collector, and the AC resistance, resulting in an increase in the 
equivalent series internal resistance.

4.3.2.2  Degradation Factors
The factors affecting the degradation of the supercapacitor also include the design 
method and the working status.

 1) Supercapacitor design method
  As mentioned in the degradation mechanism of supercapacitors, the 

impurities in the manufacturing process of supercapacitors will affect 
the degradation, reducing the trace impurities, such as water and oxygen 
in the supercapacitors, which is conducive to extending the service life. 
In addition, the composition of the electrode material also has a strong 
impact on the degradation process because the functional groups on the 
carbon electrode surface cause instability during aging when floating at 
a high potential, which causes a series of side reactions.

 2) Supercapacitor working state
  The working state affecting the degradation of supercapacitors mainly 

includes the working temperature, working voltage, working current, 
and storage time. Among them, except that the operating current affects 
the cycle degradation of supercapacitors, other factors all affect the cal-
endar degradation.

Both increased working temperature and voltage promote the degradation of super-
capacitors, with their effects on degradation. From the mechanism of supercapac-
itor degradation, overvoltage will lead to solvent decomposition, which produces 
by-products and causes damage to the fluid collection. Too high of a temperature 
will accelerate electrolyte evaporation and solvent decomposition, thus accelerat-
ing the degradation of supercapacitors. In addition, if the temperature is too high 
or too low, it can cause an equivalent increase in series internal resistance because 
the adhesive damage caused by high temperature can lead to the formation of a 
poorly conductive intermediate layer between the fluid collector and the active 
surface, and the low temperature leads to an increase in the electrolyte viscosity, 
reducing the electrolyte conductivity.
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In addition to voltage and temperature, cycling conditions (mainly current) 
are also another prominent factor affecting the degradation of supercapacitors. 
Comparing the relationship between supercapacitor degradation and cycle con-
ditions under the same voltage and temperature, one can conclude that about 30 
A will increase the equivalent series internal resistance, and the life of the current 
cycle is shortened by two times, and the role of the cycle in the acceleration of 
supercapacitor degradation is verified. In addition, a novel method to quantify the 
acceleration process of cycle degradation is put forward.

With the increase of storage time, it will bring about the three-dimensional 
structure collapse of the electrode surface caused by self-oxidation and reduction 
and the cracking or separation of the interface between the electrode and the fluid 
collector, resulting in the reduction of the pore and specific surface area of the 
active substances, resulting in the degradation of the supercapacitors.

4.3.2.3  Remaining Useful Lifetime Prognostics
Since the empirical model development for the life prediction of supercapacitors 
is still in its infancy, this section is only briefly described in the existing life pre-
diction methods. The first type of life prediction model is based on supercapaci-
tor degradation mechanism developed by a mathematical model and influencing 
factors. Based on the influencing factors, the prediction model can be categorized 
into types such as operating temperature, operating voltage, and operating current. 
These factors are treated as independent variables to establish various exponential 
relationships with battery life. By combining empirical formulas, the model can 
account for the influence of multiple factors on degradation. The second type is 
about life prediction based on artificial intelligence technology.

     4.3.3  seconD-life aPPlications of suPercaPacitor 

Since the characteristics of second-life applications of supercapacitor are the same 
as those of battery, this section does not delve into that. The analysis of second-life 
applications of supercapacitor can be referred to the applications of second-life 
batteries as detailed in Section 4.2.3.

     4.4  COST OPTIMIZATION

The optimization of the performance parameters of fuel cell vehicle components is 
to find the optimal combination of the component performance parameters in order 
to meet the vehicle performance requirements, take into account the operation effi-
ciency and life of the components, and minimize the manufacturing cost, use cost, 
and loss cost. Component performance reduction, although good for manufacturing 
cost, may limit the vehicle performance, component inefficient operation and com-
ponent degradation, and cause the whole life cycle cost not to drop but rise, such as 
in lower fuel cell system power limits vehicle performance, lower auxiliary energy 
unit power improves the fuel cell inefficient area operation probability and degra-
dation rate, and component performance improvement will increase unnecessary 
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quality and manufacturing cost. Therefore, the component optimization and energy 
management optimization of fuel cell vehicles are of great significance to reduce 
energy consumption, extend component life and reduce cost. These two problems 
are usually combined. This section will focus on component optimization.

These three energy unit parameters were optimized based on the 
PEMFC+Batt+SC fuel cell vehicle. First, it determines the discrete parameter vec-
tor of 3,024 sets of fuel cell, battery and supercapacitors according to the vehicle 
performance requirements and driving conditions, calculating the manufacturing 
cost of each power component combination according to the average fuel cell sys-
tem, battery, and supercapacitors cost. And the PMP strategy is proposed to cal-
culate the use cost to ensure close to the optimal value and reduce the calculation 
amount. The optimization results show that the increased power of the fuel cell sys-
tem increases manufacturing cost and causes slightly lower use cost (Figure 4.5a); 
the increase of battery series and parallel number leads to increased manufac-
turing cost and reduced use cost (Figure 4.5b); in the case of fuel cell power and 
battery parameters fixed, the inflection point of supercapacitor parameters corre-
sponds to the optimal supercapacitor parameters (Figure 4.5a). In the process of 
optimization, the envelope curve is the fuel cell system, battery and supercapacitor 
parameter optimization problem, namely when the manufacturing cost reduction, 
use cost may be greatly increased, so in the selection of component performance 
parameters, which should be the cumulative results, namely the total cost of life 
cycle. Similar results were obtained in PEMFC+SC fuel cell vehicles (Figure 4.6a), 
and as the number of supercapacitors increases, the global efficiency of the power 
system increases and eventually maintains at a high level (Figure 4.6b), and the 
fuel cell system can always operate in the high efficiency range (Figure 4.6c).

FIGURE 4.5a Impact of component performance on manufacturing cost and use cost.
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 FIGURE 4.5b  Impact of component performance on use cost.

 FIGURE 4.6a  Effect of supercapacitor performance on fuel consumption.

However, faced with the multi-objective problem of optimization of vehicle cost 
and component life, the combined optimization of component performance param-
eters and energy management strategies is often needed, and even the optimized 
objects include working conditions because they are usually strongly coupled.
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  FIGURE 4.6b  Propulsion system energy efficiency.

 FIGURE 4.6c  Fuel cell system energy efficiency. 

Based on PEMFC/battery/supercapacitor fuel cell vehicle, a coupling optimi-
zation problem of component performance parameters and energy management 
strategy is established. The principle is shown in Figure 4.7. The objective function 
of the optimization problem includes two parts: the manufacturing cost and the 
cost composed of the use cost and the loss cost, as shown in Equation 1.1. First, 
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it determines the 3,024 discrete parameter groups of fuel cells, cells, and super-
capacitors according to the vehicle performance requirements and driving cycles, 
calculates the total manufacturing cost based on their average manufacturing cost, 
and serves as the first part of the target function. Another part of the target func-
tion is composed of fuel cell hydrogen consumption and cell and supercapacitor 
consumption and fuel cell and battery degradation. Cost, such as Equation 1.2, 
is hydrogen consumption and power consumption through component power. 
Equation 1.3 is loss cost according to the actual degradation model of compo-
nent loss converted into the manufacturing cost, such as Equation 1.4. The global 
optimal solution is implemented by 2-D DP (two-dimensional DP optimization 
method), and the quasi-global optimal solution of the energy management strategy 
and component parameters is implemented by 2-D PMP (two-dimensional PMP) 
to ensure close to the optimal value and reduce the computation.
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FIGURE 4.7 Multi-objective optimization framework for component performance 
parameters and energy management strategies.
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       5  Digital Twin 
 An Effective Big Data 
Processing Tool for 
the Optimization of 
Electric Vehicles

Quan Zhou, Ji Li, Cetengfei Zhang and  
Hongming Xu

Decarbonization requires global actions from almost all industry sectors. The data 
from the International Energy Agency (IEA) shows that the transport sector con-
tributed to one-fifth of the total carbon emissions; therefore, decarbonization in the 
transportation sector is in urgent demand. Electrification of vehicle powertrains is 
the mainstream method to mitigate carbon emissions in road transport. One of the 
great changes in the automotive industry is that the new vehicle will be certified 
based on the evaluation of their real-world performance. The conventional design 
of experiments (DoE) method makes it difficult to meet the increasing demands 
for R&D of high-performance and low-cost vehicle products. Digitalization of 
the R&D of new vehicle products based on digital twin, Internet-of-Things (IoT), 
and artificial intelligence (AI) is now under rapid development. This chapter will 
introduce the challenges in the automotive industry and define the technical terms 
in digital twins for automotive applications. A case study of DT applications on 
vehicle control will be discussed before giving an outlook on future technology 
trends and research directions.

     5.1  CHALLENGES AND CHANGES IN THE 
AUTOMOTIVE INDUSTRY

     5.1.1  gloBal actions in DecarBonization 

Conventionally, transportation is largely dependent on energy from fossil fuels. 
Since the 1970s, global emissions from fossil energy combustion have increased 
by 90%, which has led to excessive greenhouse gas (GHG) emissions. Accord-
ing to the 2021 EV outlook published by the International Energy Agency (IEA), 
more than 20 countries around the world have electrification targets or internal 
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combustion engine (ICE) bans for cars over the next 10–30 years, and 8 countries 
(Canada, Chile, Fiji, Korea, New Zealand, Norway, United Kingdom, Sweden) 
plus the European Union have announced net-zero pledges (Figure 5.1). According 
to the IEA’s prediction, there would be over 3 billion electrified vehicles on the 
road by 2050 [1]. The electrified vehicles include battery electric vehicles, fuel cell 
vehicles, and plug-in hybrid vehicles, mainly driven by electric motors so that the 
propulsion system can operate with much higher energy efficiency than conven-
tional internal combustion (IC) engine-driven vehicles.

Different types of vehicles will require different powertrain solutions based on 
their energy and power demand. An example of the power and energy demands 
from different types of vehicles is given in Figure 5.2 [2]. Typically, light-duty vehi-
cles with a total weight of less than 3.5 T require low to medium power and energy 
while buses and coaches need medium to high energy and low to medium power. 
The design of heavy goods vehicles and off-highway vehicles is more challenging 
since they have a wide range of energy and power demand. For light-duty urban 
transport, the main technical solutions will be battery electric vehicles (BEV) and 
range-extended electric vehicles (ReEV). For light-duty vehicles with long-range 
mobility requirements and coaches and buses, plug-in hybrids (PHEV) and fuel 
cell vehicles (FCEV) are the main solutions. For this application scenario, BEV 
would also be considered if there would be a breakthrough in battery technology. 
For heavy-duty applications, PHEVs, full hybrids, fuel cells, and dedicated ICE 
with zero-emission fuels would provide flexible solutions for different applications.

     5.1.2  real-WorlD Driving econoMy anD eMissions evaluation 

Vehicle economy and emissions are key indicators for vehicle certification. The 
ways of driving can significantly impact the vehicles’ performance in terms of 

FIGURE 5.1 International combustion engine bans or electrification targets [1].
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energy consumption and emissions. Driving cycles are used to provide a rela-
tively fair evaluation of the vehicle’s performance in the R&D stage. Convention-
ally, there are two types of driving cycles: powertrain cycles (or engine cycles) 
and chassis cycles. Both are vehicle speed profiles versus the time (normally in 
km/h or mph). The former transfers the vehicle speed profile into the rotation 
speed of powertrains to allow the powertrain to be tested on a dynamometer 
(load provided by hydraulic, eddy current, or an AC motor) and the latter con-
verts the vehicle speed into wheel speed to test the prototype vehicle on a chassis 
dynamometer.

Table 5.1 listed a summary of the driving cycles used in the US and EU coun-
tries. The statistic indicators (maximum speed/acceleration/deceleration, and 
average speed) are compared. Compared to the New European Driving Cycle 
(NEDC), which was officially used in Europe for emission certification and fuel 
economy testing in light vehicles, Worldwide Harmonized Light Vehicles Test 
Procedure (WLTP) cycles, which are currently used for EU vehicle certification, is 
more aggressive and involves more trainset operation points [3]. To enable a more 
comprehensive evaluation, there are three classes of WLTP cycles (Class 1–3) for 
different types of vehicles based on the vehicle power-to-mass ratio (PMR). WLTP 
Class 3 is the most radical of the suburban driving cycles. There is a trend that 
more trainset operations and high-frequency stop-and-go conditions will be con-
sidered in vehicle certification.

One of the main changes in the new EU6d emission regulation is the 
implementation of real driving emissions (RDE) testing as an additional 

FIGURE 5.2 Energy and power demand of different types of vehicles [2].
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requirement from 2017 onwards. In the future, the vehicles will be evaluated 
in more dynamic real-world driving conditions, which brings more challenges 
than conventional testing based on driving cycles. The testing facilities for 
chassis dynamometer testing (based on driving cycles) and RDE testing are 
compared in Figure 5.3. RDE legislation adds the road as an environment for 
emission testing and certification. From Figure 5.3(c), we can see that there is a 
significant increase in the powertrain (engine) working points when the vehicle 
testing is transiting from NEDC to US06 and to RDE cycles. The vehicle fuel/
energy consumption and emissions will be also impacted by several environ-
mental dynamics (e.g., wind speed, altitudes, temperature), which convention-
ally can be controllable in the chassis dynamometer testing but unpredictable 
in RDE testing. This would also increase the working load for the development 
of vehicle powertrain products.

TABLE 5.1
Summary of Driving Cycles Used in the US and the EU Countries

WLTP

UDDS FTP-75 NEDC Class1 Class2 Class3

Max. speed (km/h) 91.25 91.25 120.00 64.40 85.20 131.30

Average speed (km/h) 31.51 25.86 33.60 28.47 35.72 46.50

Max. acceleration (m/s2) 1.475 1.475 1.042 0.764 0.958 1.583

Max. deceleration (m/s2) 1.475 1.475 1.389 1.000 1.111 1.486

FIGURE 5.3 (Continued)
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FIGURE 5.3 Vehicle emissions testing: (a) chassis testing [4]; (b) real-world driving 
emission (RDE) testing (picture from AVL’s website); and (c) working points for different 
testing regulations (picture from AVL’s report).

Source: https://www.avl.com/en/testing-solutions/all-testing-products-and-software/
emission-analysis-and-measurement/avl-move#-downloads

https://www.avl.com/en/testing-solutions/all-testing-products-and-software/emission-analysis-and-measurement/avl-move#-downloads
https://www.avl.com/en/testing-solutions/all-testing-products-and-software/emission-analysis-and-measurement/avl-move#-downloads
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     5.1.3  MoDel-BaseD DeveloPMent for autoMotive ProDucts 

The development of automotive products follows a system engineering logic, as 
illustrated in Figure 5.4, which conventionally implements model-based develop-
ment (MBD) to resolve R&D tasks efficiently at low cost [5]. MBD for automotive 
is a process of designing, simulating, and testing automotive systems using models 
that represent the behavior and functionality of the system. This approach uses 
computer models to simulate the behavior of the system and verify that it meets 
the intended requirements before it is physically built.

In MBD, the system is first designed as a model using a graphical modeling 
language such as Simulink, which is widely used in the automotive industry. The 
model is then tested and refined through simulation to ensure that it behaves cor-
rectly and meets the required performance specifications. Once the model is ver-
ified, it can be used to generate software code that will be used to control the 
system. The general process of MBD for automotive engineering includes eight 
main steps as follows:

 1) Requirements gathering: The first step in MBD is to gather and define the 
requirements for the system being developed. This includes functional 
and performance requirements as well as any constraints on the system.

 2) Model design: Using a graphical modeling language such as Simulink, 
engineers design a model of the system. The model includes compo-
nents that represent the various parts of the system, such as sensors, 
actuators, and controllers.

 3) Simulation: The model is then simulated to test its behavior under various 
conditions. This allows engineers to verify that the model is functioning 
correctly and to identify any design issues or performance problems.

FIGURE 5.4 General process of implementing MBD for automotive engineering.
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 4) Model refinement: Based on the results of the simulation, the model can 
be refined and improved to address any issues or optimize performance.

 5) Code generation: Once the model is verified and refined, it can be used 
to generate software code that will be used to control the system.

 6) Testing and validation: The software code is then tested and validated 
to ensure that it behaves correctly and meets the required performance 
specifications. This includes testing under various conditions and veri-
fying that the software code is compatible with the hardware and other 
components of the system.

 7) Deployment: Once the software code has been validated, it can be deployed 
in the final product. This includes integration with the hardware and other 
components of the system as well as testing of the complete system to 
ensure that it meets all of the requirements and functions as intended.

 8) Maintenance and updates: As the system is used in the field, it may 
require maintenance and updates to address issues or improve perfor-
mance. MBD allows for easy updates to the software code based on 
changes to the model or requirements. This helps to ensure that the 
system continues to function correctly and meet the needs of its users.

MBD is particularly useful in the automotive industry because it allows engineers 
to design and test complex systems more quickly and accurately than traditional 
methods. It also enables early detection and resolution of design issues, reducing 
the need for expensive and time-consuming physical prototypes and testing. Nev-
ertheless, there are also some potential drawbacks that need to be considered.

 1) Complexity: Developing and maintaining MBD models can be complex 
and require specialized knowledge and expertise. The models may also 
become very large and difficult to manage, which can make it challeng-
ing to ensure that they accurately represent the system being developed.

 2) Verification and validation: While MBD can help with early detection of 
design issues, verifying and validating the models can be time-consuming 
and expensive. It is important to ensure that the models are tested thoroughly 
and that the results are accurate before they are used in the final product.

 3) Tool dependency: MBD relies heavily on software tools such as Sim-
ulink and other modeling and simulation software. This can lead to tool 
dependency, where the models and software are tightly coupled and 
changes to one may require changes to the other.

 4) Cost: MBD can require significant investment in terms of time, resources, 
and software tools. This can make it more expensive than traditional 
development methods, especially for small projects or companies with 
limited budgets.

 5) Human error: Like any engineering process, MBD is subject to human 
error. Mistakes in the modeling process can lead to incorrect results or 
faulty designs, which can be costly and time-consuming to correct.
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     5.2  DEFINITION OF DIGITAL TWIN FOR 
AUTOMOTIVE APPLICATIONS

The digital twin (DT) is built as a virtual counterpart that can represent the dynam-
ics and performance of physical assets. This concept was initially conceived in 
2003, then it was rapidly developed in the 2020s [6]. Specifically, the DT is applied 
to the automotive industry in recent years [7]. In this section, the definition of 
DT will be first demonstrated. Then relative applications of DT in automotive 
engineering will be introduced according to each component. Figure  5.5 gives 
an architecture of the DT system for automotive applications, which consists of a 
physical entity (PE), a virtual representation (VR), a database with interfaces, and 
connected intelligence.

     5.2.1  Physical entitites 

Physical entities in digital twins refer to tangible objects, equipment, or systems 
that are replicated in a virtual environment to represent their real-world coun-
terparts. These entities are modeled with a high degree of accuracy and detail, 
using various data sources such as sensors, IoT devices, and other monitoring 
systems. By creating a digital twin of physical entities, it becomes possible to 
simulate their behavior, performance, and interactions with other entities in a 
controlled environment. This enables various applications such as predictive 
maintenance, virtual testing, and optimization of processes, which can help 
improve efficiency, reduce costs, and minimize risks associated with the physi-
cal entities in question.

FIGURE 5.5 The frame of the digital twin applied to the vehicle system.
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The physical entity referred to in this chapter is the vehicle system, includ-
ing the whole vehicle system and its subsystems, such as the powertrain system. 
The development of physical entities can be based on some existing techniques, 
like hardware-in-the-loop testing. There are some on-shelf solutions from indus-
try companies, for example, AVL and Siemens. In academic research, Rassolkin 
et al. proposed a test platform for the electric propulsion drive systems for the 
autonomous vehicle [8]. In the research of Ruba et al., a test bench is built for the 
permanent magnet synchronous machine based on field programmable gate arrays 
in establishing a motor digital twin system [9].

     5.2.2  virtual systeMs 

A virtual system in digital twin refers to the digital replica of a physical system 
or process. It is a digital model that mimics the behavior, characteristics, and 
interactions of a physical system, such as a manufacturing plant, a power grid, 
or a transportation network. A virtual system is typically created by combining 
various data sources, such as CAD files, simulation models, and sensor data, to 
develop a complete and accurate representation of the physical system. By creating 
a virtual system, it is possible to simulate the behavior of the physical system under 
various conditions and scenarios, enabling predictive analytics, optimization, and 
decision-making. This can help improve efficiency, reduce downtime, and opti-
mize operations, making it an essential tool for various industries such as manu-
facturing, energy, and transportation.

The virtual system in the automotive digital twin is developed based on their 
digital models, which are similar to the models that were used for model-based 
development. The main difference between the virtual system and the models in 
MBD is that the virtual system is not constant. The virtual system is capable of the 
perception of physical entities and can be self-adapted through statistical learning. 
The recent update of some industry software like MATLAB/Simulink and AVL 
CRUISE provides the functions to allow the model to be self-optimized with exper-
imental data. In academia, there are also some studies on the development of virtual 
systems. Zhang et al. present a digital framework to represent the EV fleet behavior 
to optimize the charging scheduling and positioning [10]. In the research of Magar-
gle et al., virtual vehicle braking is modeled for simulation with various dynamic 
factors. By this approach, the predictive maintenance information can be obtained in 
the field [11]. While Li et al. proposed a virtual system of EV battery packages, the 
battery parameters can be estimated with links to the physical entity [12].

     5.2.3  Data interface 

The data interface in a digital twin refers to the method used to transfer and 
exchange data between the physical system and the digital twin. It enables the 
integration of data from various sources such as sensors, IoT devices, and other 
monitoring systems into the digital twin, allowing for real-time monitoring and 
analysis of the physical system. The data interface is responsible for collecting, 
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processing, and transforming data into a format that is compatible with the digital 
twin. It also enables the digital twin to send commands or instructions back to the 
physical system to control or adjust its behavior. The data interface plays a critical 
role in ensuring the accuracy and reliability of the digital twin by ensuring that 
the data used in the virtual model reflects the behavior of the physical system as 
closely as possible.

For automotive applications, there are some existing communication protocols 
and data interfaces that can be used to bridge physical entities, virtual systems, 
and connected intelligence. One of the most used interfaces is the control area 
network (CAN) or CAN bus, which was developed by Bosch in the 1980s. The 
CAN bus enables high-speed communication between devices on a network, 
allowing them to exchange messages in real time. It uses a bus topology, where all 
devices are connected to a shared communication line, and each device can send 
and receive messages. However, the CAN bus usually has bandwidth limits of 1 
Mbps, which limits its application in the era of connected and autonomous driv-
ing. More effective Ethernet-based methods (e.g., EtherCAT and time-sensitive 
networking (TSN)) are in rapid development and can support data rates of up to 
10 Gbps. Ethernet-based networking also enables more advanced features such as 
over-the-air updates, remote diagnostics, and advanced driver assistance systems 
(ADAS). These functions are enabling technologies for better connectivity of the 
key components in an automotive digital twin system.

     5.2.4  connecteD intelligence 

Connected intelligence for digital twins refers to the ability to gather, analyze, 
and share data from various sources to create a more comprehensive and accurate 
digital representation of a physical system or process. It involves the integration of 
data from sensors, IoT devices, and other monitoring systems into the digital twin, 
enabling real-time monitoring and analysis of the physical system. Connected 
intelligence enables the digital twin to simulate the behavior of the physical sys-
tem more accurately, providing insights into its performance, potential failures, 
and opportunities for optimization. It can also enable predictive analytics and real-
time decision-making, allowing for the more efficient and effective operation of 
the physical system.

Connected intelligence also facilitates collaboration and knowledge-sharing 
across different teams and departments, enabling more effective problem-solving 
and decision-making. It can help break down silos and foster a more integrated 
approach to system design, development, and management. Connected intelli-
gence for digital twins is a key enabler of the digital transformation of industries 
such as manufacturing, energy, and transportation, allowing them to operate more 
efficiently, reduce costs, and improve sustainability.

Based on the key milestones of AI applications in automotive systems, we can 
categorize the development of AI into four levels as shown in Figure 5.6. For Level 
I, AI models are used to model the nonlinearity of the vehicle systems, such as the 
engine performance [13]. The AI models are expected to assist in some R&D tasks 
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(e.g., component sizing [14] and control calibration [15]) if they have the capability 
of offline optima searching (Level II). By incorporating AI-based modeling and 
AI-based optimization, the Level III AI models can deal with model predictive 
control tasks that allow the vehicle system to be optimized online [16, 17]. In Level 
IV, AI models would have the capability of self-learning and adaptive learning 
based on the recent development in the internet of vehicles and advanced algo-
rithms (e.g., the reinforcement learning [18] and transfer learning [19]).

     5.3  DT-BASED AUTOMOTIVE POWERTRAIN 
CONTROL OPTIMIZATION

Digital twin technology also can contribute to the development of automotive 
powertrains. There are several successful applications of DTs in the design, 
control, and maintenance of large and expensive industry products: Wang et al. 
developed a DT for real-time monitoring and fault diagnosis of offshore wind tur-
bines [20]. Zaccaria et al. proposed a DT with multilayer intelligent approaches 
for the health management of aircraft engines [21]. Jiang et al. developed a DT 
with a five-dimension structure for prognostic and health management of a smart 
grid [22].

Currently, most DT research for vehicle applications focuses on improving model 
accuracy [12] and data connection [23]. Li et al. incorporate an H-infinity filter with 
the particle swarm optimization (PSO) algorithm to improve the model accuracy of 
the digital counterpart of batteries for EVs [12]. Zhou et al. developed a DT of an 
energy-harvesting shock absorber to optimize its design parameters using the PSO 
algorithm [24]. Zhou et al. proposed a human-knowledge–augmented Gaussian 

FIGURE 5.6 Stages of AI development for automotive applications.
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process regression method to build a battery DT for the state-of-health estimation 
[25]. It is essential for OEMs to attain robust and reliable design in the R&D stage 
harnessing DT because it is impossible for vehicle manufacturers to monitor and 
control all vehicles centrally through centralized cloud computing [26]. Accord-
ing to the outlook from two recent review papers for DTs [27, 28], research into 
DT-based robust design with self-adaption is in high demand.

     5.3.1  the Digital tWin systeM for oPtiMization 

The DP system for powertrain control optimization is illustrated in Figure  5.7, 
which consists of a physical entity (the PHEV), a digital model of the PHEV, a 
service model for EMS optimization, a database, and interfaces between each 
component. This sector provides a workflow of transferring testing data to vehicle 
digital twin and digital twin empowered control optimization, and the details of 
the digital modeling and the energy management strategy optimization will be 
introduced as follows.

5.3.1.1  The Physical Entity of the Vehicle
The physical entity in this study is a plug-in hybrid electric vehicle powered by a 
125 kW traction motor. The primary power source of the powertrain is a 60 Ah 
battery pack. A 26.6 kW range-extender is the alternative power unit, and it sup-
plies the power for battery charging. The vehicle specifications are summarized 
in Table 5.2.

FIGURE 5.7 Digital twin–based vehicle optimization.
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The power flow of the vehicle is controlled through a rule base determined 
by three SoC thresholds. The base control logic is that the vehicle runs as a pure 
EV when the battery SoC is high. When the SoC level drops below 16%, the 
range-extender starts and gradually increases its power output to maintain the 
battery SoC level. The working mode of the range-extender is determined by 
three different thresholds of the SoC level, namely SoC low limit, SoC medium 
limit, and SoC high limit, which are also defined as the SoC1, SoC2, and SoC3 
in the rest of this paper. When the vehicle’s speed is lower than 16.1 km/h, the 
range-extender is completely shut down. Otherwise, the range-extender may have 
low speed, medium speed, and high speed with low torque or high torque, six pairs 
of working conditions.

5.3.1.2  The Virtual Model, Real-Time Environment, and Data Interfaces
The virtual vehicle is developed in MATLAB/Simulink, which will be running on 
a real-time computer to allow the real-time simulation as illustrated in Figure 5.8. 
The vehicle’s digital model was downloaded from a host PC to the LABCAR 
through an Ethernet connection. Then, the algorithm was transferred into a code 
compiler and then implemented into the controller unit of the LABCAR for real-
time validation. A CAN connection was made between the control unit and the 
vehicle platform so that the LABCAR could represent the CAN connection in the 
vehicle. In the processor-in-the-loop (PiL) test, the data was transferred between 
the controller and the vehicle platform in real time

TABLE 5.2
The Specifications of the Vehicle
Vehicle Specifications Parameters Values

Weights 1400 kg

Wheelbase 2570 mm

Vehicle body Length/Width/Height 3398/2040/1577 mm

Front area 2.38 m2

Air drag coefficient 0.3

Tires Size F/R 175/70 R19

Engine Displacement 0.647 L

(DOHC- 8 valve I2) Maximum power 25 kW

Traction motor Maximum power 125 kW

(PM AC Synchronous) Maximum torque 250 Nm

Number of cells 96

Battery Nominal system voltage 355 V

(Lithium-Ion) Pack capacity 60 Ah

Pack energy 22 kWh

Drivetrain (Rear wheel drive) Final drive ratio 9.7
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     5.3.2  DeDicateD Particle sWarM oPtiMization 
for Dt-BaseD oPtiMization 

This section introduces the optimization problem from the mathematical model-
ing aspect. A dedicated adaptive particle swarm optimization (DAPSO) algorithm 
is proposed to deal with the DT-based optimization in this section. Distinguished 
from conventional particle swarm optimization, the proposed method is capable of 
self-adaption through interaction with the digital twin.

5.3.2.1  The Optimization Problem
Three battery SoC thresholds, SoC1, SoC2, and SoC3, will be varied to achieve 
the minimum equivalent consumption of fuel and electricity while maintaining 
battery SoC. The mathematical representation of the optimization problem can be 
formulated as
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FIGURE 5.8 Running vehicle model in real-time computer.
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where Jcom is the objective function; SoCfinal and ECfinal  are the final SoC and 
equivalent consumption at the end of a given driving cycle, respectively; j is 
the weight factor to balance the preference of cycle-end SoC control against the 
cycle’s equivalent consumptions. The SoCstd  is a desired final SoC level taken 
from the rule-based control. The SoCref  and ECref  are normalization factors, where 
SoC SoC SoCref = −+ − , the ECref  is the equivalent fuel consumption under the 
conventional rule-based control. The SoC  = 13.5% and SoC+  = 60% are battery 
SoC’s lower and higher boundaries, respectively. The equivalent consumption of 
fuel and electricity can be calculated by
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Where mice  is the fuel consumption rate in g/s; Pice  and Pem are the power demand 
of the engine and the traction motor in kW, respectively. P tice ( ) and P tem ( ) can 
be  obtained with the DT with different settings of the SoC thresholds. mem  
is  the  equivalent fuel consumption transferred from electricity in g/s, it can be 
calculated by
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Where HLVH  is the fuel’s lower heating value; Sdis  and Schg  are the equivalent 
factors for battery discharging and charging, respectively; and S Sdis chg= = 2 5.  
are predefined; hbatt  and hem are the energy efficiency for battery and motor 
respectively.

5.3.2.2  The Interactive Optimization Processes
Like the PSO algorithm, the DAPSO uses computer agents (particles) to retrieve 
the optimal objective function values and return the best particle position. Initially, 
the DAPSO randomly allocates p within a search space defined in Eq. (5.1). The 
position of each particle is x SoC SoC SoCi

t i t i t i t T
= 


1 2 3

, , ,, , , where i= 1,2,3, . . .; p is 
the index number for individual particles; k= 1,2,3, . . .; t is the number of itera-
tions; and t  is the maximum number of iterations. Based on the position informa-
tion, each particle will compute its objective function using the DT, and the best 
positions will be returned to update the particles’ positions following the mecha-
nism of the particle swarm optimization
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Where vi
t  and xi

t represent the velocity and position of the i th particle at the t th status; 
g* represents the global best of the particles among all the results; xi

t*( ) is the local best 
of the current swarm at the t th iteration; Î1 and Î2  are two random numbers between 
0 and 1; a and b  are two attraction factors, and α β= = 2 satisfy the general cases; 
w is the inertia factor which is used to balance the exploration and exploitation, it is 
normally drawn from 0.6~0.9. We proposed an initial set of 0.65 for this case.

5.3.2.3  Adaptive Control Through Mode-Switching
The state machine regulates settings of the DAPSO based on three modes: a) explo-
ration, b) exploitation, and c) termination. The main difference between DAPSO 
and conventional PSO is that DAPSO can explore the best swarm moving strategy 
during the heuristic optima search process through a new exploration and exploita-
tion mechanism. In the exploration mode, DAPSO will attempt new search areas 
while the individuals of the DAPSO will follow the inertia to move in the exploita-
tion model. The detailed settings for the three modes are illustrated as follows.

5.3.2.3.1  Exploitation Mode
The algorithm would switch to the exploitation model if the criteria defined in 
threshold 1 are met. Threshold 1 evaluates the battery state of charge and equiva-
lent consumption by:
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k  are battery state of charge and equivalent energy con-
sumption obtained by the DT with the best particle position at iteration t; SoCref  
is the reference battery SoC level, which is 16% in this example; and ECref  is the 
reference equivalent consumption for each cycle.

The fulfillment of both criteria indicates the present process is heading in the 
desired direction, so the exploitation continues with the w remaining the same. 
The particles will update their velocity and position.

5.3.2.3.2  Exploration Mode
To prevent the algorithm’s entrapment in local optima, the DAPSO implements an 
exploration mechanism based on the differences of the cost function value in five 
neighboring iterations at an early stage (before the first 20 iterations),
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If Î = 0, the exploration will be activated, and the inertia factor (at the first itera-
tion after reset) will be reset to its initial value as

 w1 0 3= .  (5.7)

otherwise, the DAPSO will use a logistic chaos map to generate the inertia factor 
as follows

 w w wk k k− ⋅ ⋅ −( )− −2 6 11 1.  (5.8)

5.3.2.3.3  Termination Mode
Conventionally, the termination conditions were mainly categorized by four types 
of criteria in Table 5.3 following the work of Zielinski et al. [29]. The algorithm 
may stop at a certain number of iterations (qiter) regardless of the optimized results, 
also if the improvement of the objective function does not reach a given thresh-
old (qimp) within a certain range of iterations or if the movement (dimensionless 
quantity in search spaces) of single particles is less than a certain threshold qmov ,  
the algorithm will be terminated. The distances of each particle to the instant 
best particle (which represents the position of the best solution) are evaluated, and 
this indicates how close the particles gather towards the optimal position; if the 
average distance is below a certain threshold qdis, the algorithm will be terminated.

In this example, all of four criteria are considered. The improvement-based termi-
nation condition is applied to decide the exploration and exploitation actions, where 
the qimp =∈. The rest of the three criteria are the termination threshold (threshold 
3), the algorithm will terminate when the termination threshold (threshold 3) is ful-
filled, as indicated by the achievement of any of the following three conditions
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TABLE 5.3
Different Termination Conditions of PSO
Termination conditions Objects of consideration Thresholds

Maximum-iterations Number of iterations qiter

Improvement-based The improvement of objective function between iterations qimp

Movement-based The movement of single particles qmov

Distribution-based The average distance of the swarm qdis
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where the k  is the iteration number, the Pmov  is the average particles’ movement, 
the is the Pdis  average distance between the position of each individual particle and 
the position of the best particle. qiter, qmov , and qdis are their corresponding thresh-
olds. Mathematically, Pmov  and Pids  are calculated as:
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where the vi
k , xi

k and xi
k∗( ) are from Eq. (5.4), the N  is the number of particles in the 

swarm. the Pmov  is the velocity increment of each particle from the k -th iteration to 
the (k+1)-th iteration. Its average value Pmov  indicates the magnitude of particle 
movement. The Pdis  is the distance between positions of each particle (xi

k) with the 

position of the best particle (xi
k∗( )) at the k-th iteration. Similarly, the Pdis  indicates 

the magnitude of distribution for particles near the best solution.

     5.3.3  oPtiMization PerforMance 

Optimality, computational efficiency, and trustworthiness are the three most 
important performance indicators for evaluating AI algorithms [30]. A compre-
hensive scoring system is established in this paper by calculating the weighted sum 
value of the functions affecting these three factors. To measure the performance 
of the DT system, the overall score Sis defined based on the weighted sum of three 
components, which evaluate optimality, computation efficiency, and success rate, 
respectively, as follows

 S J
T T

T
optimality

= − + −
−







w wcom 2

opt ave

ave
1 1 1( )� ���� ���� 

+
ℵ

ℵ






Computation efficiency

opt

� ������� �������
w3

total






Success rate
� ��� ���

 (5.11)

where, Jcom  is the measure of vehicle performance (i.e., the objective function 
defined in Eq. 5.1), which is the core of the component representing the optimality 
of the DT-based system. In the second component (representing the computation 
efficiency), Topt is the time consumption of a single optimization, and Tave  is the aver-
age time consumption of all studied PSO algorithms. The smaller Topt is, the higher 
computational efficiency will be. In the third component (representing the success 
rate), Àopt  is the number accounted for the success and Àtotal  is the total number 



92 Big Data and Electric Mobility

of the trials (Àtotal  = 20 in this example). The ratio of Àopt  to Àtotal  measures the 
robustness of the DT-based system; and w1, w2 , and w3 are weighting factors for 
optimality, computation efficiency, and success rate, respectively. This example 
demonstrates how DAPSO can find the maximum value of the overall score func-
tion, and the setting of weighting factors, w1 = 0 5. , w2 = 0 25. , and w3 = 0 25. , are 
selected as an example. The setting of the weighting factors can be adjusted for 
different optimization preferences.

     5.3.4  local oPtiMization PerforMance in learning cycles 

The optimization results obtained under the local learning cycle are shown in 
Table 5.4, with the best optimization results underlined. In Table 5.4, the system 
optimality is evaluated based on the objective function (defined in Eq. 5.1) value 
that measures the vehicle performance by considering: 1) the difference between 
the final SoC and target SoC and 2) the equivalent fuel consumption (EC) improve-
ment rate. The better the vehicle performance is, the higher the optimality value 

TABLE 5.4
Local Learning Results

Single scoring targets

Driving PSO Iteration of Time Computational Success Overall 
cycle type Optimality convergence spends (s) efficiency rate (%) Score

UDDS PSO1 0.606 50 989.5 0.77 100 0.745

PSO2 0.586 36 724.6 1.10 65 0.730

PSO3 0.610 27 548.5 1.32 65 0.797

PSO4 0.617 47 947.7 0.82 80 0.713

DAPSO 0.610 30 611.0 1.24 100 0.864

Highway PSO1 0.506 50 650.9 1.43 40 0.709

PSO2 −0.020 103 1343.8 0.82 70 0.369

PSO3 −0.074 117 1533.7 0.65 60 0.275

PSO4 0.349 77 1010.8 1.11 85 0.664

DAPSO 0.419 34 445.4 1.61 90 0.836

US06 PSO1 0.497 50 662.8 1.58 65 0.806

PSO2 0.485 117 1554.9 1.01 70 0.671

PSO3 0.500 253 3364.6 −0.13 60 0.366

PSO4 0.162 54 724.6 1.54 50 0.591

DAPSO 0.543 31 412.7 1.74 80 0.906

NEDC PSO1 0.019 50 866.7 1.37 40 0.453

PSO2 0.392 59 1037.3 1.25 80 0.708

PSO3 0.487 153 2653.8 0.08 65 0.426

PSO4 0.111 55 969.5 1.30 80 0.580

DAPSO 0.575 39 676.9 1.51 90 0.890
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will be. The computation efficiency is evaluated based on the second component 
of Eq. 5.11; the faster the calculation is, the higher the computation efficiency 
will be. The number of iterations for convergence are compared in Table 5.4. The 
overall score, S, gives the overall performance of the DT system by considering its 
optimality, calculation efficiency, and success rate, simultaneously.

For the UDDS cycle, PSO4 generates the highest optimality of 0.617. PSO3 is 
the least time-consuming at 548.5 s, and the DAPSO and the PSO1 have the high-
est success rate of 100%. For the Highway driving cycle, the PSO1 has the best 
optimality but only has a success rate of 40%. The DAPSO has the highest success 
rate of 90%, with the smallest average time consumption of 445.4 s. For the US06 
cycle learning process, the DAPSO attains the highest optimality with 0.543, the 
least time consumption of 412.7s, and the highest success rate of 80%. The local 
optimization results for the NEDC cycle are shown in the fourth part of Table 5.4. 
Again, the DAPSO has the best optimality of 0.575, the smallest average time 
consumption of 676.9 s, and the highest success rate of 90%. The overall scores of 
the DAPSO and PSO1–4 are shown in Table 5.4, and it indicates that the DAPSO 
has the highest overall scores, which are 0.864, 0.836, 0.906, and 0.890 for UDDS, 
Highway, US06, and NEDC cycles, respectively.

     5.3.5  cross-valiDation in stanDarD cycles 

After the local learning process, the optimal local strategy obtained under each 
driving cycle is validated by the other three driving cycles to study the global 
performance. Through the cross-validation, the best thresholds settings of 
SoC SoC1 2, and SoC3 are 9.65%, 14.80%, and 16.02%, respectively, under the High-
way cycle. The overall scores obtained in both optimization and validation cycles 
are compared in Figure 5.9. The strategies optimized by the DAPSO and PSO1 have 
similar performance in optimization and validation cycles. The average optimality 
is calculated (with Eq. 5.11) to indicate the robustness of the heatmaps and presented 
in Table 5.5, where an SoC-corrected fuel consumption control is evaluated. It can 
be seen that the DAPSO is distinguished from its counterparts by achieving the 
highest value of optimality (0.6180). To demonstrate the effectiveness of the pro-
posed method, the performances (fuel consumption and battery SoC trajectory) of 

TABLE 5.5
The Average Optimality of Different EMS Control Settings
PSO type Optimality values

PSO1 0.6004

PSO2 0.5580

PSO3 0.4983

PSO4 0.5948

DAPSO 0.6180
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the PHEV optimized by DAPSO under the Highway cycle are compared with the 
theoretical best performance (obtained by dynamic programming, DP) and the base-
line rule-based method. According to the results, the proposed DAPSO algorithm 
is shown effective in the optimization of PHEV control performances: More than 
11.4% of fuel consumption is saved compared to the rule-based method. With the 
capability of maintaining similar SoC levels with DP results (error within 0.63%), 
the PHEV optimized by DAPSO only consumes 6% more fuel than the theatrical 
best performance.

     5.3.6  gloBal PerforMance in siMulateD real-WorlD Driving 

The EMSs with thresholds optimized by DAPSO based on the cross-validation 
under the standard cycles are implemented on the vehicle running under the ran-
dom driving cycles and the results are compared in Table 5.6. The effectiveness 
of the proposed DAPSO is shown via the optimality calculations of the PHEV. 
The optimality scores are calculated based on the final SoC control and the fuel 

FIGURE 5.9 The PiL results for the three validation cycles: (a) the fuel consumption of 
each cycle, (b) the SoC level, (c) the battery voltage variation, (d) the current generation of 
the range-extender.
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economy as mentioned in Eqs. (5.1) and (5.11), which indicate the performances of 
the EMS optimized by the DAPSO. The EMS optimized based on the Highway 
cycle has the highest average optimality value of 0.5954, which is 2.6% higher than 
the average value of the UDDS (0.5803), 7.5% higher than the value of the US06 
cycle (0.5537), and 3.5% higher than the average value of the NEDC cycle (0.5752). 
It can be obtained that the EMS threshold settings generated by DAPSO based on 
the Highway cycle hold the highest robustness in general driving conditions.

Processor-in-the-loop (PiL) tests were conducted to validate real-time control 
functionalities, and the vehicle’s real-time performances under the three selected 
driving cycles are illustrated in Figure 5.8. The initial battery SoC was set to 16% 
for a charging sustaining scenario for the vehicle with high electricity demand. 
The random driving cycles 2 and 3 are gentler than random cycle 1; thus, less ardu-
ous working conditions of the range-extender are generated in these two cycles, 
which caused more minor variations for their SoC. It can also be obtained that 
when SoC drops significantly in the period of 2000s to 2600s, the EMS is shown 
to maintain the battery voltage in a reasonable range (4.5%). According to Fig-
ure 5.9 (d) and (c), it can be obtained that the variations of SoC and voltage are 
mild in most urban and rural driving conditions, indicating that the battery works 
primarily in gentle scenarios, which helps mitigate the degradation of battery [31].

     5.4  SUMMARY AND OUTLOOK

The advancement of transportation electrification has led to the emergence of 
advanced control and virtual engineering. One notable outcome is the ability to 
update vehicle control software through over-the-air (OTA) service. Automotive 
original equipment manufacturers (OEMs) now have access to users’ extensive 
data, necessitating the use of digital twin technology as an effective tool for pro-
cessing this data and optimizing vehicle design. This chapter provides an overview 
of the significant changes and challenges in the automotive industry, defines the 
concept of the automotive digital twin, and showcases the advantages of using 
digital twin technology in developing vehicle control software by introducing a 
dedicated optimization algorithm for digital twin–based control optimization.

TABLE 5.6
Global Optimization Comparison

DAPSO optimized thresholds

Optimality UDDS Highway US06 NEDC

simulated real-world driving cycle 1 0.5723 0.5935 0.5556 0.5735

simulated real-world driving cycle 2 0.5812 0.6001 0.5492 0.5794

simulated real-world driving cycle 3 0.5875 0.5925 0.5562 0.5726

Average optimality score 0.5803 0.5954 0.5537 0.5752
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Based on the authors’ observations, it is anticipated that in the future, dig-
ital twin technology will deeply integrate with e-mobility systems and artifi-
cial intelligence. Stages I  and II AI methods have already demonstrated their 
strong capabilities in handling offline optimization tasks in automotive product 
development, such as system integration, component sizing, and control param-
eter calibration. These AI methods are on the verge of commercialization, with 
DT-based optimization using particle swarm optimization (PSO) being a notable 
example. It is conceivable that higher-level AI methods, such as reinforcement 
learning and transfer learning, will further enhance the big data processing capa-
bility of digital twins, consequently driving product evolution, reducing research 
and development costs and time, and significantly influencing the future of the 
automotive industry.
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     6.1 INTRODUCTION

The attention towards environmental sustainability has undergone a great increase 
in recent years. The governments worldwide legislate stricter and stricter fuel 
economy and CO2 emission regulations since the transportation sector is one of 
the largest contributors to the greenhouse gas emissions. To meet the regulations, 
automakers and researchers around the world developed eco-friendly vehicle tech-
niques to reduce emissions over the past decades, including downsized engines, 
electrified powertrain, lower rolling resistance tires and the use of lightweight 
materials. Among them, the electrified powertrain is recognized as the most 
promising and effective approach.

Powertrain electrification refers to the process of replacing vehicle components 
that operate on a conventional energy source with components that operate on 
electricity, which has been one of the biggest trends in the automotive industry 
today. Despite the benefits of electric powertrains, electrification has been slower 
than expected due to limited driving range, long charging time, and inadequate 
charging infrastructure. Recent developments in power electronics and especially 
in lithium-based battery technology have overcome most of the technical chal-
lenges, enabling the large-scale promotion of pure electric vehicles (PEV).

In addition to the pure electric-drive powertrain, hybridization is considered a 
viable step towards powertrain electrification. The idea of utilizing a hybrid pow-
ertrain dates back to 1898, when Ferdinand Porsche built his first car, the Lohner 
Electric Chaise, which was powered by both an internal combustion engine (ICE) 
and an electric motor. The main purpose of the hybrid powertrain in the early 
stage was to improve the launching performance by using the electric machine to 
assist the ICE. Owing to the cost and performance constraints of battery packs, 
the hybrid design had not been accepted by the retail market until decades later, in 
the late 1990s. In 1997, the Toyota Prius was introduced with two power sources: a 
gasoline engine and a battery pack. This model rapidly became successful owing 
to its significant fuel-saving benefits. Since then, numerous hybrid electric vehi-
cles (HEV) have been launched such as the Honda Insight in 1999 and the Ford 
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Escape Hybrid in 2000. The additional power source allows for greater flexibility 
in engine use while meeting the requirement of the driver’s demand. Moreover, 
supernumerary techniques such as regenerative braking and engine shut-down 
provide alternative methods for achieving better fuel economy and emissions 
reduction.

In this context, electrified powertrain refers to the use of electric power to oper-
ate a vehicle with or without electrical energy storage. Therefore, it covers full 
electric and hybrid electric powertrains.

     6.1.1 PoWertrain electrification level 

Powertrain electrification level that is normally indicated by battery voltage, 
stored energy, and power determines the capacity of the electric path. In general, 
the electrified powertrain can be divided into six types according to the electrifica-
tion level: micro HEV, mild HEV, full HEV, plug-in HEV (PHEV), extended range 
EV (ER-EV) as well as pure EV (PEV). Table 6.1 shows their main distinctions.

Micro HEV is the simplest and most economic hybrid solution, which usually 
contains an electric motor often in the form of a small integrated or belted alter-
nator/starter. This electric motor is not involved to drive the vehicle when running 
but is used to shut down the engine at a complete vehicle stop, and then restart 
when the brake pedal is released. Mild HEV uses a larger electric motor, which 
enables torque assistance and regenerative braking to achieve better fuel savings. 
In addition, mild HEV is typically featured in high-voltage electrical systems (e.g., 
48 V or 90 V). Full HEV has larger batteries and stronger electric motors than 
those in micro and mild hybrids, which are often high in cost. They enable the 
usage of the purely electric mode for a short duration in city driving.

TABLE 6.1
Comparison of Micro, Mild, Full, and PHEV

TypesFunction or component 
parameters Micro Mild Full PHEV ER-EV PEV

Idle stop/start ◆ ◆ ◆ ◆ ◆ -

Electric torque assistance ◆ ◆ ◆ - -

Energy recuperation ◆ ◆ ◆ ◆ ◆

Electric drive ◆ ◆ ◆ ◆

Battery charging (during driving) ◆ ◆ ◆ -

Battery charging (from the grid) ◆ ◆ ◆

Battery voltage (V) 12 48 ~ 160 200 ~ 300 300 ~ 400 >300 >300

Electric machine power (kW) 2 ~ 3 10 ~ 15 30 ~ 50 >60 >60 >60

Pure electric driving range (km) 0 0 5 ~ 10 >10 >200 >200

CO2 estimated benefit 5 ~ 6 % 7 ~ 12 % 15 ~ 20 % >20 % >20 % >20 %
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Compared to these three HEV types without the charger, another three types 
(PHEV, ER-EV, and PEV) have larger battery packages with normally over 300 
V voltage to store electricity from the grid. This allows ER-EV and PHEV to be 
operated in PEV mode for longer periods than full HEV. The former generally 
uses a series configuration, in which the gasoline engine only generates electricity 
and the electric machine drives the vehicle; an example is the BMW i3 with a 
range-extender. The engine is not fired until the battery is depleted. In the latter, 
the engine is usually engaged to directly power the vehicle. An electric machine 
acts as a motor/generator based on the driving demand and battery state of charge 
level, such as that installed in the Chevrolet Volt. PEV is exclusively driven by the 
electric motor that is powered by electricity stored in the battery. Generally, higher 
electrification levels can lead to bigger fuel economy benefits.

     6.1.2 chaPter organization 

This chapter provides a comprehensive review of topologies design and compo-
nent sizing of electrified powertrains, which is organized as follows. We start by 
discussing the characteristic of the electrified powertrain, then show the power-
train architectures of PEV and HEV, respectively. Next we explain the hybrid 
powertrain system component sizing method followed by an exploration of HEV 
modeling and configuration. Finally, we discuss the challenges and future works 
and conclude.

     6.2 PEV POWERTRAIN ARCHITECTURES

The main components of an PEV powertrain are the motor, gearbox, clutch, and 
differential. These components may be combined in many ways to provide various 
PEV powertrain topologies. The vehicle dynamic, energy efficiency, and price of 
PEV are significantly influenced by the design of their powertrain architectures. 
Depending on how the motors are installed on the vehicle chassis, there are two 
categories of powertrain designs for PEV: centralized drive and dispersed drive.

     6.2.1 Pev With integrateD Drive PoWertrain 

The first electric vehicle was created in 1880, but advancement in electric vehi-
cle technology was modest until 1973, and ICE vehicles dominated. People were 
influenced by internal combustion engine vehicles and only explored replacing 
the ICE with an electric motor without increasing the study on the drive structure, 
when PEV were once again extensively concerned with the energy crisis and envi-
ronmental pollution. The electric vehicle with a centralized drive powertrain was 
developed as a result of this concept. The centralized drive powertrain design is 
similar to that of an internal combustion engine vehicle, except instead of the ICE, 
an electric motor is used. Through the gearbox and differential, the power output 
must be delivered to the wheel end. The rich technical basis of internal combustion 
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engine vehicles has accelerated the development of the centralized drive in PEV, 
and automakers have invested much in safety and driving performance research.

The architecture of a centralized drive powertrain can be divided into three 
categories, as shown in Fig. 6.1. The first is the clutch-equipped gearbox (Fig. 
6.1(a)), which normally has two to three gears and interrupts power while reducing 
shift stress during gear changes. The clutch is eliminated in the second kind (Fig. 
6.1(b)), and the gearbox with a fixed gear ratio connects the electric motor directly. 
This architecture allows for additional vehicle interior space by lowering the mass 
of the gearbox as well as the size of the transmission device. In the third kind (Fig. 
6.1(c)), the motor, gearbox, and differential are all united. The left and right half-
shafts, respectively, drive the matching side wheels.

Although the centralized drive powertrain offers features such as a simple 
structure and technological maturity, making it convenient for PEV deployment, 
there are certain drawbacks, including a huge powerplant, limited vehicle interior 
space, low transmission efficiency, and complex management. Furthermore, its 
complicated chassis construction and long mechanical connections significantly 
impair power responsiveness and energy-efficiency. The inherent difficulties of 
high size and low efficiency of the transmission system in internal combustion 
engine vehicles have not been overcome by the centralized drive powertrain 
design; therefore, the challenge of optimizing and updating the powertrain archi-
tecture of PEV remains unsolved.

     6.2.2 Pev With DistriButeD Drive PoWertrain 

As more people became aware of PEV, research into this new form of vehicle 
grew, expanding from the original engine substitution to the updating and optimi-
zation of the powertrain structure. PEV drive structures have begun to shift to a 
distributed drive with various drive actuation systems. Researchers are attempting 
to perfect distributed drive architectures in order to fully profit from the advan-
tages of electric drive systems.

As early as 1900, the German automotive expert Ferdinand Porsche had 
already developed the concept of a distributed drive for PEV. The traditional form 
of a single power source driving a single or dual axle is transformed into a power 
configuration where each wheel is powered by an independent power source by 
distributed drive powertrain, which breaks the chassis structure of the centralized 
drive. PEV have two types of distributed drive powertrains: in-wheel motor drive 
and wheel-side motor drive, as shown in Fig. 6.2. To provide distributed drive, 
the wheel-side motor drive places the motor on the side of the wheel and links it 
to the wheel through the transmission assembly (Fig. 6.2(a)). Although the drive 
shaft and differential are all reduced, the multi-stage reducer assembly is kept, and 
the hysteresis and torsional vibration issues produced by mechanical transmission 
are still present. As a result, the wheel-side motor type is an “incomplete” electric 
vehicle chassis streamlining option.

The in-wheel motor drive uses a hub motor as the drive unit and removes 
the transmission system. Its most important feature is that the in-wheel motor, 
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FIGURE 6.1 PEV with integrated drive powertrain. (a) Clutch-equipped gearbox (b) The 
clutch is eliminated (c) The motor, gearbox, and differential are all united.
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FIGURE 6.2 PEV with distributed drive powertrain. (a) In-wheel motor drive (b) Wheel-
side motor drive.

hydraulic braking, and suspension systems are integrated into the hub, so the 
mechanical part of the electric vehicle is fully simplified (Fig. 6.2(b)). The in-wheel 
motor drive removes the complicated transmission system, increases body space 
release, decreases powertrain bulk, and enhances power transmission efficiency. 
The vehicle steering mechanism is straightforward to build because the chassis 
arrangement approach was concentrated on the wheel, and the coexistence of elec-
trical and friction brakes allows for full use of regenerative braking. One of the 
most promising electric vehicle architectures has been identified as the in-wheel 
motor drive with independent driving, braking, and steering capabilities.

     6.2.3 reMarks anD suMMary 

For PEV, the centralized drive is still the most common powertrain configura-
tion. Distributed drives, particularly in-wheel motor drives, have been widely 



107Topologies Design and Component Sizing of Powertrains

developed due to their numerous advantages. The advantages of distributed drive 
with in-wheel motor are mainly reflected in the following aspects:

 1) High efficiency of transmission
  Because of the centralized drive’s long mechanical construction, fric-

tion loss in the torque transmission decreases over time, resulting in 
overall transmission efficiency of only 85% ~ 90%. When compared to 
the centralized drive, the in-wheel motor drive can avoid transmission 
path losses to the greatest extent possible and increase powertrain effi-
ciency by 8% ~ 15%, achieving the effect of energy savings from the 
structural level.

 2) Accurate torque control and quick reaction
  The response time of an in-wheel motor can reach 10 ms, which is ten 

times faster than that of an ICE, and the in-wheel motor drive eliminates 
the hysteresis caused by mechanical transmission, resulting in a faster 
power generation speed for an electric vehicle with distributed drive. At 
the same time, because of the powertrain’s high integration, it’s simpler 
for the in-wheel motor to provide accurate control and real-time feed-
back of wheel-end torque, laying the groundwork for the development 
and execution of chassis control algorithms.

 3) More flexible chassis control
  The chassis’ freedom has been substantially increased because of the 

independent control of the in-wheel motor. Differential steering allows 
for a more flexible design of steering characteristics, as well as giving 
the vehicle the ability to steer in place. A  torque distribution method 
that aims for both power and efficiency maximizes tire adhesion mar-
gins while lowering total vehicle energy consumption and assuring 
stable vehicle operation. The decoupled regulation of motor and fric-
tion braking allows for faster energy recovery throughout the vehicle 
braking process while minimizing the detrimental influence of friction 
braking hydraulic variations on driver comfort.

With the innovation of motor integration technology, the vibration, water, and heat 
recession problems of hub motors have been effectively solved, and the increase 
of under spring-mass has been proven to be under control and can be improved by 
optimizing the suspension structure. At the same time, the closed-spoke shape of 
the in-wheel motor allows air to pass through the body more smoothly, thus mini-
mizing the effect of wind resistance. Thus, the in-wheel motor drive represents the 
future form of electric vehicle configuration.

     6.3 HEV POWERTRAIN CONFIGURATIONS

Due to the presence of two power sources, namely an ICE and electric motor, 
as well as a sophisticated power coupling system, the powertrain components of 
HEV are more complex than those of EV. The powertrain architecture of HEV is 
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FIGURE 6.3 Configuration of parallel HEV.

influenced by the price, economy, and dynamics of the vehicle as well as the com-
plexity of the power management system. The powertrain configurations of HEV 
may be broken down into four categories based on power coupling and transfer 
type: parallel, series, power-split, and multi-mode.

     6.3.1 Parallel hyBriD PoWertrain 

6.3.1.1 Operation Mechanism
In parallel HEV, both the ICE and motor/generator (MG) are connected mechan-
ically with the output shaft (Fig. 6.3) and can simultaneously provide power to 
operate the vehicle. The available MG is used to shift the engine operating points 
to a higher-efficiency area. It acts as a generator at low power demand and as a 
motor at high power demand. In this way, the engine can work at higher efficiency 
than that in a conventional vehicle. In addition, parallel hybrids must include a 
transmission to match high engine speed and low vehicle speed.

6.3.1.2 Sub-Types and Typical Models
The parallel configuration can be considered as an incremental add-on to a tradi-
tional powertrain, and its design requires relatively little investment and engineer-
ing effort. Parallel hybrid powertrains can be further classified into five subtypes 
according to the location and size of the MG: P0, P1, P2, P3, and P4 (Fig. 6.4).

Subtype P0 refers to the configuration in which a motor is installed before the 
ICE and is connected to ICE by a belt. Therefore, it is also known as a belt-driven 
starter/generator HEV. Owing to the torque limitation of the belt, the starter/ 
generator is always small and can fulfill only the start-stop function.

The P1 subtype refers to the configuration in which the motor is mounted on 
the crankshaft of the engine. Here, the motor is always referred to as an integrated 
starter generator. The installation position of the integrated starter generator 
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always restricts its size; this limitation does not allow the integrated starter gen-
erator to provide high torque to operate the vehicle. Only some functions can be 
fulfilled such as start-stop, regenerative braking, and acceleration assistance.

Subtypes P2 and P3 are the two most popular variations of parallel HEV. In 
these configurations, the motor is mounted on the input and output of the trans-
mission, respectively. The motor in P2 and P3 is much larger than that in P0 and 
P1 and has the ability to operate the vehicle at relatively high speeds. Recapturing 
more regenerative braking and eliminating engine drag result in better energy-ef-
ficiency than that in other subtypes. Many European and Korean automakers have 
released P2-type HEV such as the Volkswagen Passat hybrid and the Hyundai 
Sonata hybrid. In China, BYD used the P3 subtype in the BYD Qin.

The P4 subtype refers to a parallel hybrid in which the motor is mounted directly 
on the drive shaft or is incorporated into the hub of a wheel using in-wheel motor 
technology (Fig. 6.4(e)). P4 is generally not used independently but is combined 
with other parallel subtypes, P2 and P3, particularly in four-wheel drive vehicles.

Previous studies have compared the performance of different parallel HEV. 
A comparative study through dynamic programming was also conducted in which 
P2 is shown to have better fuel economy than P1 owing to its larger motor, and P2 
and P3 have similar fuel economy benefits.

6.3.1.3 Limitations and Challenges
Parallel HEV is efficient during city stop-and-go conditions. However, this might 
not be the most efficient configuration because a mechanical connection still exists 
between the ICE and the output shaft. In addition, because MG cannot be used to 
simultaneously charge the battery and assist in powering the engine, the power 
assist and PEV operations must be controlled carefully to avoid battery depletion. 
This problem is exacerbated during city driving, in which frequent start–stops can 
consume a significant amount of battery energy and force the engine to generate 
power in its low-efficiency area. Because of these drawbacks, parallel HEV has 
a smaller market share percentage even though a variety of models have become 
available.

FIGURE 6.4 Configurations of subtypes P0 to P4 in parallel HEV.
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FIGURE 6.5 Configuration of parallel HEV.

     6.3.2 series hyBriD PoWertrain 

6.3.2.1 Operation Mechanism
Series HEV generally use traction motors to operate the vehicle alone, whereas the 
ICE is connected to a generator (Fig. 6.5). The motors are powered by the battery 
and the generator and can be placed on both front and rear axles to realize electric 
all-wheel-drive functionality. Since no mechanical coupling exists between the 
ICE and vehicle drive axle, the ICE could operate in its best efficiency area regard-
less of the vehicle speed and power required by the driver. Moreover, the traction 
motor has a wider operating range and higher efficiency than the ICE. Therefore, 
a transmission, which is a necessary component in a conventional vehicle, might 
not be necessary for a series HEV. Thus, the series hybrid powertrain is simpler 
compared with other types, including in configuration and energy management.

6.3.2.2 Typical Models
Only a few HEV in the market use the series configuration except range- extended 
HEV. The most successful model of this type in the market is the BMW i3, 
which provides an optional gasoline-powered range-extender auxiliary power 
unit. Recently, some original equipment manufacturers (OEM) have developed 
electric cars with range-extended techniques. A  typical example is the Nissan 
e-Power, which has a 1.2 L gasoline engine that acts solely as a generator for bat-
tery charging.

6.3.2.3 Limitations and Challenges
The fuel economy of series HEV can be better than that of conventional vehicles. 
However, high energy conversion losses can occur because 100% of the engine 
power must first be converted into electricity. Part of the electricity is stored in the 
battery, and the remainder powers the motors to propel the vehicle. Even though 
the MG has relatively high efficiency and the ICE operates at high efficiency, the 
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multiple energy conversions still result in low overall efficiency. Additionally, the 
series configuration requires a large traction motor to meet the torque requirement 
because the motor is the only traction device.

     6.3.3 PoWer-sPlit hyBriD PoWertrain 

6.3.3.1 Operation Mechanism
Power-split HEV usually employs one or multiple planetary gears (PG) sets to cou-
ple the ICE, two MGs and the driveshaft together (Fig. 6.6). The PG sets are the 
heart of the power-split hybrid powertrain, which is usually referred to as a pow-
er-split device. The power split device decouples the ICE from the vehicle speed 
and acts as a continuously variable transmission (CVT), which results in efficient 
engine operation regardless of the vehicle speed. Therefore, the power-split device 
in power-split HEV is also referred to as an electronic-CVT (E-CVT). Because of 
this decoupling function, power-split HEV generally shows better fuel economy 
than both series and parallel HEV, particularly in city driving conditions.

The power split device allows for power flow from the engine to the driveshaft: 
either through the mechanical path or the electrical path (Fig. 6.7). In the electri-
cal path, the power-split device operates as a series HEV. Part of the ICE power 
is converted into electricity first by a generator, which drives the motor or charges 
the battery. In the mechanical path, the power-split device also enables the system 
to operate as a parallel HEV, in which the ICE can generate power flow to the 
driveshaft directly. Therefore, the power-split HEV combines the advantages of 
both series and parallel hybrids.

6.3.3.2 Sub-Types and Typical Models
The power-split hybrid powertrain can be further classified into three subtypes 
according to the point of the power split execution: input-split, output-split, and 
compound-split. In an input-split HEV, the ICE power is split at the input to the 

FIGURE 6.6 Configuration of power-split HEV.
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FIGURE 6.7 Power flow of power-split hybrid powertrain.

transmission by collocating an MG with the output shaft and sometimes with an 
additional set of gears in between. In an output-split vehicle, the ICE power is split 
at the output to the transmission by collocating an MG with the ICE, also some-
times with an additional set of gears in between. In a compound-split vehicle, no 
MG collocation occurs with the output shaft or the engine.

The most successful power-split hybrid on the market is the input-split sub-
type, such as the Toyota Hybrid System or Hybrid Synergy Drive, introduced by 
the Toyota Motor Corporation. This subtype was first implemented in the Toyota 
Prius in Japan in 1997 and was then extended to the company’s Camry and Lexus 
hybrid vehicles in the following years. The second-generation Toyota Hybrid 
System was announced in 2004, offering increased system efficiency, enhanced 
power, and improved scalability. Scalability enables the Toyota Hybrid System to 
adapt to different vehicle sizes by changing the reduction paths of ICE/MG1 and 
MG2. A similar input-split concept was adopted by the Ford Motor Company in 
its Fusion Hybrid and C-max models. However, General Motor developed two 
classes of power-split powertrains by using the other two subtypes in a power- 
split configuration, the Voltec Hybrid Powertrain with an output-split mode 
and the Allison Hybrid System with both an input-split and a compound-split 
mode.

Power-split HEV has a variety of design variations by changing the locations of 
the employed components. To explore all possible designs, Liu and Peng proposed 
an automated modeling method to efficiently build the dynamics of a power-split 
HEV and identified a design with optimal fuel economy. Bayrak et al. [1] enumer-
ated all feasible powertrains by using a bond graph and generated complete sets of 
feasible designs based on an exhaustive search. Kim et al. [2] reorganized all the 
possible single PG configurations into compound-lever design space and screened 
the optimal design by balancing the fuel benefits and the drivability.
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6.3.3.3 Limitations and Challenges
The electrical path incurs higher energy loss than the mechanical path because of 
the extra energy conversion. More ICE power delivered through the electrical path 
indicates more energy loss caused by the power-split device. When the speed of 
either MG is equal to zero, the engine-generator-motor path has zero power trans-
mission, and the energy transition is the most efficient. This condition is known 
as the mechanical point. The energy dissipation in the electrical path might cause 
power-split HEV to have greater energy losses than those in parallel HEV in some 
situations, particularly in high-speed cruising.

     6.3.4 Multi-MoDe hyBriD PoWertrain 

6.3.4.1 Operation Mechanism
The multi-mode hybrid powertrain system can be developed by adding clutches 
to parallel or power-split powertrain systems, which can become any of the three 
hybrid configurations (series, parallel, and power-split) in the same powertrain. 
Its subtype is also referred to as the operating mode. The freedom to choose from 
different modes makes it possible to achieve higher energy efficiency and perfor-
mance than that realized by using the other HEV configuration types introduced 
before.

6.3.4.2 Sub-Types and Typical Models
Multi-mode hybrids can be further classified into two subtypes, series-parallel 
and PG coupling, according to whether PG sets are used to couple the powertrain 
components.

 1) Series-parallel multi-mode configuration
  The series-parallel subtype (Fig. 6.8) was first introduced by Honda in 

2014 in its i-MMD system, which is installed in the Accord plug-in 
hybrid. Two MGs are used in this configuration: One is fully coupled 
with the ICE, and the other connects directly to the drive shaft. A clutch 
is employed to disengage the connection between the ICE and output 
shaft, which enables three operating modes: PEV, series, and parallel. 
The mode shift strategy avoids inefficient engine operation: The PEV 
mode is used when the battery state of charge is high, and the series and 
parallel modes operate only at low and high vehicle speeds. A regular 
transmission is no longer required to reduce the powertrain cost. Since a 
mechanical connection still exists between the ICE and the output shaft 
in the parallel mode, ICE cannot operate in its most efficient area at all 
vehicle speeds.

 2) PG coupling multi-mode configuration
  The PG coupling subtype is developed by adding clutches between 

the PG nodes in a power-split configuration. A typical example is the 
Advanced Hybrid System patented by General Motors in 2002 (Fig. 
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FIGURE 6.8 Configuration of series-parallel hybrid powertrain.

6.9(a)). By switching the two clutches, two operating modes are 
achieved: the input-split mode and the compound-split mode. The for-
mer mode can provide large output torque, which is more suitable for 
low-speed cruising, whereas the latter tend to have higher efficiency 
at high speeds by preventing the speed of MG2 from increasing con-
tinuously with the vehicle speed. As a result, better fuel economy and 
launching performance are achieved by proper mode selection, particu-
larly in buses that require higher torque at low speeds.

In addition to Allison Hybrid System, General Motors in 2011 intro-
duced another multi-mode powertrain known as Voltec, which origi-
nally had a single PG and three clutches (Gen1) and was later changed 
to a 2-PG design (Gen2) in 2015 (Fig. 6.9(b)). The three clutches in 
the Voltec Gen2 enable five operating modes. Of these modes, Voltec 
Gen2 has an input-split mode and a compound-split similar to that in 
the Allison Hybrid System, in addition to two PEV modes for plug-in 
functionality.

Toyota developed a multi-mode hybrid powertrain by adding a 
Ravigneaux-type PG and two clutches to Toyota Hybrid System. The 
second MG’s gear is switched between high and low ratios for low- and 
high-speed driving, respectively. To develop a more powerful hybrid 
system, Toyota combined the Toyota Hybrid System with a four-speed 
automatic transmission in 2017 to multiply the output torque (Fig. 
6.9(c)). This powertrain is the multi-stage hybrid featured in the compa-
ny’s Lexus LC 500h and LS 500h models.

Although many multi-mode configurations have been proposed and patented, 
many more remain unexplored. A  multi-mode hybrid can be generated in two 
ways. The first involves changing the locations of the powertrain components, 
including the engine, two MGs, and the output node to the vehicle drive axle. Each 
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device can connect with any node of the PG sets. In the second method, the num-
ber and locations of permanent connections and clutches also result in different 
hybrid powertrains. Fig. 6.10 shows all possible clutches and permanent connec-
tions of both double and triple PG sets. The total number of possible clutches that 
connect two nodes, or a node with the ground, is

 N C N Nclutch NP P P= + − −3
2 3 2 1  (6.1)

where the first term is the number of clutches that can be added between any 
two nodes, and the second term represents the number of total possible ground-
ing clutches. Since locking any two of the three nodes in a PG produce identical 
dynamics, the third term eliminates redundant clutches. Finally, the output node 
should not be grounded. By changing the locations of the powertrain components 
and selecting different clutch positions, billions of configurations are available.

6.3.4.3 Limitations and Challenges
The deployment of multiple modes can introduce severe mode shift problems. 
Improper mode shifting will increase the noise, vibration, and harshness; increase 
the energy consumption; and reduce the ride comfort and vehicle drivability. To 
reduce the negative impacts caused by mode shifts, researchers have begun to 
investigate mode shifts of series-parallel HEV, particularly for transitions from 
PEV modes to hybrid-drive modes.

In comparison to series-parallel HEV, PG-based multi-mode HEV have a 
worse performance of noise, vibration, and harshness because they rely on PG 
sets to couple the engine and the driveline mechanically; no torque converter or 
clutch is used, which are usually available in series-parallel HEV to passively 
damp the vibrations and oscillations. Researchers have investigated mode shifts 
of PG-based multi-mode HEV from two perspectives: mode shift map design and 
mode transition control. The mode shift duration should be minimized to reduce 
the torque hole and energy loss during the transition. However, driveline torsional 
vibrations and torque variation caused by the engine torque pulsations should be 
suppressed to mitigate the level of noise, vibration, and harshness and improve 
the vehicle’s drivability. Fortunately, the rapid torque response of electricity can 
compensate for the torque disturbance.

     6.4 HYBRID POWERTRAIN SYSTEM COMPONENT SIZING

The mechanical and electrical connection network between the components of the 
hybrid powertrain determines HEV performance and cost, which is also impacted 
by the component sizing. HEV has more than two power sources, and the energy 
management control system is responsible for coordinating the output power of the 
two sources; if the matching of power parameters is not optimal, the energy of one 
power source may not be properly used. For example, if the motor matching power 
of an HEV is too high, the motor does not reach the peak power point during 
vehicle driving, which is the motor power surplus, and the hybrid powertrain cost 
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FIGURE 6.9 Lever diagram of different multi-mode HEV. (a) Advanced hybrid system 
(b) GM Voltec Gen2 powertrain (c) Toyota multi-stage hybrid powertrain.
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rises; conversely, the hybrid powertrain cannot fully use the vehicle’s fuel-saving 
potential. The component sizing of a hybrid powertrain system is the process of 
calculating the power source parameters, and it has a substantial impact on the 
economy and the cost of HEV. The HEV configuration design and energy manage-
ment system optimal control are strongly connected to hybrid powertrain system 
component sizing, as shown in Fig. 6.11. In component sizing, the optimization 
variables are engine power, motor power, battery capacity, planetary gear ring and 
sun wheel gear ratio, and differential ratio. When hybrid powertrain components 
parameters are matched, engineers select the final system parameters through 
many matching tests, which commonly results in engine power deficit or engine 
power overload during the calibration process. Finally, the effective sizing of the 
hybrid powertrain component is the focus and challenge of current research in the 
field of HEV design. Then, a thorough review of component sizing for a hybrid 
powertrain system is conducted in the next section.

FIGURE 6.10 All possible clutches and permanent connections of both double and triple 
PG sets.

FIGURE 6.11 Component sizing of HEV.
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     6.4.1 traDitional coMPonent sizing MethoDs 

In general, there are two traditional component sizing methods: experience-based 
and equivalent calculation-based, both of which are aimed to satisfy the needs of 
improving vehicle performance and reduce cost based on experiences, databases, 
or basic computations. The traditional component sizing methods are plain and 
easy to understand, considering the planned vehicle performance parameters as 
well as various constraints such as packaging, component availability, and so on. 
However, it is not optimal or even sub-optimal.

For the experience-based sizing method, the battery is chosen based on a rec-
ommendation from a major automotive manufacturer that the battery pack should 
not exceed 20% of the vehicle’s mass. The ICE and motor are selected with con-
sideration of the maximum power requirement of the vehicle at maximum driving 
speed while maintaining a specified degree of power excess. In addition, some 
research looks at the oil-electric mixing ratios to formulate the hybrid power-
train sizing method. For example, S. Lukic et al. [3] discovered that both high 
and low oil-electric mixture ratios are harmful to the hybrid powertrain system 
energy economy, a high mixture ratio will have a significant impact on the vehicle 
economy. The lowest energy consumption can be achieved when the mixture ratio 
is kept between 0.3 and 0.5. These experience-based sizing methods are mainly 
based on the estimation of previous vehicle performance databases, design expe-
rience, or the analysis of trial-and-error simulation or prototyping experimental 
findings of the accessible components.

In some research, the component sizes for hybrid powertrain systems are deter-
mined by vehicle dynamics using mathematical estimates of maximum output 
power to meet acceleration performance, maximum speed, grade ability, and other 
requirements. This method is known as equivalent calculation-based sizing. For 
example, the motor power requirements were determined by the maximum speed 
and maximum gradient at that speed; in series mode, the ICE power should meet 
the average power needs; the energy storage system needs are available energy 
and maximum power, which are computed using the required range. Furthermore, 
Sinoquet et al. [4] quantitatively examined the influence of battery sizes and motor 
maximum power on fuel economy, and the optimal sizes were chosen based on 
the results.

     6.4.2 oPtiMization-BaseD coMPonent sizing MethoDs 

Because numerous disciplines, such as electrical, chemical, and mechanical, may 
be involved in such a sophisticated hybrid powertrain system, it is exceedingly dif-
ficult to size its components manually or analytically because they rely on sizing 
experience or simple calculations. The component sizing problem, unlike expe-
rience-based sizing and equivalent calculation-based sizing methods, is mostly 
solved by using an optimization-based sizing method. The goal of the component 
sizing problem is to reduce cost, electric energy consumption, and fuel in general,
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Where v1  and v1  are the electricity and fuel price, respectively. pb  is the instan-
taneous battery power, m f  is the instantaneous fuel consumption, CP  is the price 
of the hybrid powertrain system. ts  and td  are the initial and final time of the 
driving cycle for the component sizing test, respectively. The hybrid powertrain 
sizing optimization problem is frequently linked to the energy management con-
trol of HEV; thus, the research is divided into three categories: alternative opti-
mization, nested optimization, and simultaneous optimization methods, as shown 
in Fig. 6.12.

The alternative optimization method is rarely employed since it does not ensure 
the optimality of the optimization results; instead, most studies prefer the nested 
optimization method, which is frequently also referred to as a two-layer optimiza-
tion method. The simultaneous optimization necessitates the integration of both 
vehicle energy management and component sizing simultaneously. A more com-
plicated optimization problem is formulated, which is difficult to solve. Convex 
optimization algorithm has been used in some research to solve the simultaneous 
optimization problem of series HEV, but it cannot be used for parallel HEV.

A lot of literature on hybrid powertrain sizing using a two-layer optimization 
method exists, and the objective of component sizing is vehicle economy in gen-
eral. In the upper layer, various optimization methods are proposed for hybrid 
powertrain component sizing, such as sequential quadratic programming, genetic 
algorithms, and heuristics algorithms. In the lower layer, the energy management 
strategy is formulated to manage the power distribution between the engine and 
the motor. Other optimization objectives have been included in some research, for 
example, A. Malikopoulos’s [5] discussion of the influence of hybrid powertrain 
sizing on CO2 emissions. A growing number of studies have begun to construct 
a multi-objective optimization problem that includes the total cost of the hybrid 
powertrain system as well as the vehicle life cycle cost, to minimize the vehicle’s 
manufacturing or life cycle use costs while maintaining system performance (e.g., 
energy economy, dynamic performance.). In addition, some research has focused 
on the impact of battery capacity on hybrid powertrain system economics and cost, 
proposing optimization for power sources that combine batteries and supercapac-
itors to lower the total cost of the system (both manufacturing and usage costs) 
while satisfying the user daily needs (e.g., sufficient range).

     6.4.3 reMarks anD suMMary 

In conclusion, relevant researchers have conducted a series of great studies and 
produced a range of hybrid powertrain components sizing methods, such as expe-
rience-based, equivalent calculation-based, and optimization-based. However, 
because the hybrid powertrain system is complicated and has a variety of con-
trol objectives, integrating the optimization problems of topology configuration, 
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FIGURE 6.12 Optimization-based component sizing methods.

energy management, and component sizing with advanced optimization algo-
rithms to achieve optimal HEV design has become the future research of hybrid 
powertrain component sizing.

     6.5 HEV MODELING AND CONFIGURATION EXPLORATION

Multi-mode HEV, as was previously discussed, offers the highest chance of estab-
lishing a balance between vehicle energy efficiency and driving performance. The 
bulk of the design space has not yet been taken into account, and there are just a 
few of these designs available on the market. An approach for creating combina-
tions and simulating dynamics is needed to investigate such a large design area. 
The bond graph approach, automated modeling, and the graph-theoretic technique 
are typically the three methodologies that are mentioned.

     6.5.1 hev MoDeling techniques 

6.5.1.1 Graph-Theoretic Method
Graphs have been used to represent system topologies since the 1700s and are 
currently adopted in the design of HEV powertrain systems. Silvas et al. [6] pro-
posed an undirected connected finite graph to represent the HEV configuration 
composed of nodes, or components such as power sources and wheels, and edges, 
or connections between components such as transmissions and PGs. By defining 
the functionality and cost constraints, a constraint logic programming problem 
is formulated. The feasible configurations for all four configuration types can be 
derived. However, the performance of each generated configuration on factors 
such as fuel economy and acceleration performance cannot be evaluated because 
the proposed undirected graph cannot be used to model the dynamics. Adam H. 
Ing [7] used a directed linear graph to represent the powertrain structure. By using 
the graph theory, a quasi-static model of the configuration can be generated. The 
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fuel economy and acceleration performance of the designs generated are evaluated 
based on the equations made. However, this method cannot be used to model a 
hybrid powertrain with multiple modes.

6.5.1.2 Bond Graph Method
Bond graphs are used to model multi-energy domain systems such as mechanical, 
electrical, and hydraulic systems and have recently been applied to the modeling 
of HEV. Other than the graph theory, the bond graphs have a notion of causality 
and allow the modeling of system dynamics.

In bond graphs, power flow is represented by a bond between two nodes and is 
denoted by a pair of variables known as power variables, that is, flow and effort, 
the product of which is the instantaneous power of the bond. For example, in a 
mechanical system, force is the effort variable, and velocity is the flow variable.

On the basis of the bond graphs, Bayrak et al. [1] proposed a framework to 
develop single and multi-mode hybrid configurations. By enumerating all undi-
rected graphs for external junctions and internal junctions, assigning 0 and 
1-junctions and the bond weights, the design space of the HEV configurations are 
generated in the form of bond graph representation. A quasi-static model is gen-
erated based on the bond graph in the form of state-space representation as shown 
in Eqs. (6.3) and (6.4):
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where w*  and T*  are angular acceleration and the corresponding torques of the 
powertrain devices, respectively, Cmode is the kinematic relationship matrix derived 
from the bond graphs.

In Bayrak’s framework [1], the inertia of the engine and MG is ignored, which 
may have a considerable influence on the performance evaluation of HEV, espe-
cially for the mode shift of multi-mode HEV.

6.5.1.3 Automated Modeling Method
Automated modeling refers to the methodology of modeling the dynamics of the 
hybrid powertrain automatically by following predefined rules. This method was 
first proposed by Liu and Peng [8] in 2009 for power-split HEV and was extended 
to multi-mode HEV modeling by Zhang [9] in 2014. The core concept of auto-
mated modeling is to model the dynamics of the configuration in the state-space 
representation as follows:
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where J is a diagonal matrix with dimensions of 3n × 3n reflecting the inertia 
on each node, where n is the number of PGs. In addition, D is aconstraint matrix 
with entries determined by the connections of PG nodes with the four powertrain 
components.

For a multi-mode hybrid powertrain consisting of multiple operating modes, 

each mode has a dynamic model in the form of A TΩ= . To accelerate the model-
ing, Zhang et al. [9] proposed a torque transition matrix M and angular accelera-
tion transition matrix P based on the clutch states. By using the transition matrices, 
the dynamics of each mode in a multi-mode hybrid powertrain are represented by 
the characteristic matrix A* as shown in Eq. (6.6), which governs the relationship 
between the angular acceleration of powertrain devices w*  and their correspond-
ing torques T*.
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Based on the derived characteristic matrix, the feasibility, functionality, and char-
acteristics of each configuration can be determined. Thus, in the following section, 
we discuss automated modeling to explore all possible configurations of the hybrid 
powertrain.

     6.5.2 configuration exPloration 

6.5.2.1 Brute-Force Search and Dynamics Modeling
As discussed in the literature, different powertrain component locations may result 
in different hybrid powertrains. Thus, for simplicity, we fixed these locations to be 
the same as that in the GM Voltec, as shown in Fig. 6.13. In this configuration, the 
ICE connects with the ring gear of the first PG; the vehicle output shaft connects 
with the carrier gear of the last PG; and the two MGs connect with the sun gears 
of the first PG and last PG, respectively. In addition, the PG nodes, including the 
sun, carrier, and ring gears, are numbered in a series in the following description.

Before exploring all possible sub-configurations, the effective number of 
links that connect PG nodes should be first determined. As the degree of free-
dom (DoF) of a single PG is 2, the DoF of 2- and 3-PG hybrid powertrains 
with no connection begins from 4 and 6, respectively. In this study, the system 
DoF refers to the number of components with independent speed. Since each 
effective link reduces the DoF by one, the meaningful DoF of the multi-mode 
hybrids are 1, 2, and 3 representing the parallel mode, the power-split mode, 
and the engine speed, respectively, where the speed of one of the MGs is free. 
Therefore, the effective numbers of links for 2- and 3-PG hybrids are between 
1 and 3 and between 3 and 5, respectively. In addition, we assigned to each link 
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a vector composed of the serial numbers of the connected nodes. For example, 
the link between Nodes 1 and 4 is represented. Node 1 is grounded, with a 0 
assigned to indicate the grounded node.

In previous research, all possible combinations of links inside the 2- and 
3-PG hybrids are explored exhaustively. It should be noted that any nodes con-
nected by two or multiple links should be first merged. For example, three links 
in 2-PG hybrids should be combined and represented by the vector. In this study, 
the depth-first search was used to traverse all possible connected nodes. Finally, 
the dynamics of each configuration are represented in the state-space form, 
as shown in Eq. (6.6), by the automated modeling methodology introduced in 
Section 6.1.3.

6.5.2.2 Mode Classification
For organizing all sub-configurations, several vectors and coefficients were con-
structed and extracted from the characteristic matrix A*. The four rows of the A* 

FIGURE 6.13 Locations of powertrain components for (a) 2-PG and (b) 3-PG hybrid 
powertrains.
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matrix are referred to as H H Hveh MG1, , ,eng  and HMG2
, respectively. The elements of 

Hveh are V ,V ,Vveh eng MG1, and VMG2
, which represent the torque contributions of each 

component to the output shaft. Vveng , VMG1
, and VMG2

, can be zero if the powertrain 
components are not connected with the vehicle output.

In addition, six coupling vectors reflecting the coupling relation among  
powertrain components are defined as H HVE,=  veh; Heng

  , H H ; HVMG1 veh MG1=[ ],  
H H ;HVMG2 veh MG2=[ ], H H ; HEMG1 eng MG2=  , H H ; HEMG2 eng MG2=   , and 
H H ; HMG1MG2 MG1 MG2=[ ]. According to the defined vectors, several parameters are 
listed as follows.

 1) Rank of the characteristic matrix A*  
  Since each row of A*  in Eq. (6.6) represents the relationship between 

the torque input and a component’s acceleration, a rank reduction 
means that the acceleration of one component can be represented as 
a linear combination of those of the other components. Herein, the 
number of accelerations that can be represented by other components 
is determined by the number of the independent accelerations, which 
represents the DoF defined at the beginning of this section. However, 
the rank of the characteristic matrix, rank RA( * )A , is the dimension 
of the torque input or the component’s acceleration on the basis of lin-
ear algebra, which also refers to the number of linearly independent 
accelerations. Therefore, the DoF of the system equals the rank of its 
characteristic matrix, rank(A*)

 DoF rank(A= *)  (6.7)

 2) Rank of the coupling matrix H ,H , H , H HVE VMG1 VMG2 EMG1 EMG2
 and HMG1MG2

  Similar to the rank of the characteristic matrix A*, the rank of the coupling 
matrix can represent the correlation between the two components in that 
matrix. For example, if the rank of HVE is equal to 1, the acceleration of 
the vehicle is proportional to the acceleration of the engine. This means 
that the vehicle output shaft is coupled with the engine directly. On the 
contrary, a rank of HVE equal to 2 means that the acceleration of the vehicle 
and the engine are independent of each other. In the following section, 
the ranks of the matrices H , H , H , H , HVE VMG1 VMG2 EMG1 EMG2

, and HMG1MG2 
refer to, R , R , R , R , RVE VMG1 VMG2 EMG1 EMG2

 and RMG1MG2
, respectively.

In this section, all configurations explored in Section 6.3 are classified by layers 
based on the parameters defined by the binary tree, as shown in Fig. 6.14. To sum-
marize, all 14 valid configuration types and their classification criteria are listed in 
Table 6.2. In addition, the numbers of all configuration types are summarized. The 
unique configuration in Table 6.2 refers to sub-configurations that share the same 
characteristic matrix even with different topologies. Fig. 6.15 shows an example of 
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multiple topologies having different links but the same dynamics because Nodes 
C1, R2, C2, S2, and C3 all have the same rotational speed. In this study, configu-
rations sharing the same dynamics are considered to be equivalent; thus, only one 
is extracted as a unique configuration.

Table 6.2 lists the number of feasible configurations and unique configurations 
for both 2- and 3-PG hybrid powertrains determined after screening the infeasible 
and redundant configurations. The 3-PG powertrains have almost 100 times the 
number of feasible configurations than those of 2-PG powertrains originally. After 
the equivalent configuration screening, only 102 and 4,041 unique configurations 
were retained. Performance analysis of all unique configurations has been con-
ducted in previous research.

In this section, all 14 sub-configuration types derived are discussed separately, 
and examples of a 2-PG system are used to demonstrate their functionality and 
characteristics.

 1) Series configuration
  According to the series configuration introduced in Section 6.3.2, the 

DoF of the series mode is 2. Fig. 6.16 shows two examples, in which one 
MG is coupled with the engine mechanically through the first PG set, 
and the other MG drives the vehicle by grounding the R2 node. Since 
the engine is not mechanically connected to the wheels, the engine’s 
corresponding coefficient Veng in the Hveh is zero. In addition, two MGs 
are mechanically connected with the engine and wheels separately, 
leading to V V 0 V +V 0MG1 MG2 MG1 MG2

2= , 2 ≠  and H (3) +H (4) 0eng
2

eng
2 ¹ .

FIGURE 6.14 Configuration classification by binary tree.
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TABLE 6.2
Classification Criteria and Number of Feasible Configurations for  
14 Configuration Types

Feasible Unique 
configurations configurations

Configuration Double  Triple  Double  Triple  

type Classification criteria PG PG PG PG

Series DoF = 2, Veng = 0, VMG1VMG2 = 0, Heng(3) 9 70,978 5 85
configuration Heng(4) = 0, V 2 + V 2

MG2  ≠ 0, Heng(3)2
MG1  + 

Heng(4) 2 ≠ 0

Compound  DoF = 3 2 88,30 2 650
split

(3 DoF)

Compound  DoF = 2, Veng ≠0, VMG1VMG2 ≠ 0, RVE = 2, 4 2,175 4 269
split RVMG1RVMG2 = 4, REMG1REMG2 = 4, RMG1MG2 = 2

(2 DoF)

Input split DoF = 2, Veng ≠ 0, VMG1VMG2 ≠ 0, RVMG1RVMG2 = 2 13 12,390 6 172

Output split DoF = 2, Veng ≠ 0, VMG1VMG2≠ 0, REMG1  13 13,227 6 210
REMG2 = 2

ECVT with DoF = 2, Veng ≠ 0, VMG1VMG2=0, V 2
MG1  + 4 2,394 4 106

one MG V 2
MG2  ≠ 0

ECVT with DoF = 2, Veng ≠ 0, VMG1VMG2 ≠ 0, RMG1MG2 = 1 3 2,388 3 82
two MGs in 
series

Engine only DoF = 1, V 2
eng ≠ 0, VMG1 VMG2 = 0, VMG1  + 17 10,594 4 47

V 2
MG2  = 0

Parallel with DoF = 2, Veng ≠ 0, RVE = 1, VMG1VMG2 ≠ 0 3 1,833 3 82
fixed gear

(2 MGs, 2 DoF)

Parallel with DoF = 1, Veng ≠ 0, VMG1VMG2 ≠ 0 330 240,530 21 1,218
fixed gear

(2 MGs,  
1 DoF)

Parallel with DoF = 1, V  ≠ 0, V  V  = 0, V 2
eng MG1 MG2 MG1  + 80 68,376 24 666

fixed gear V 2
MG2  ≠ 0

(1 MG,  
1 DoF)

PEV (2 MGs, DoF = 2, Veng = 0, VMG1VMG2 ≠ 0 2 1,279 2 55
2 DoF)

PEV (2 MGs, DoF = 1, Veng = 0, VMG1VMG2 ≠ 0 40 35,049 12 331
1 DoF)

PEV (1 MG,  DoF = 1, Veng = 0, VMG1 VMG2 = 0, V 2
MG1  + 76 83,527 6 68

1 DoF) V 2
MG2  ≠ 0

Sum 596 553,570 102 4,041



FIGURE 6.15 Example of topologies sharing the same dynamics.

FIGURE 6.16 Examples of series configuration. (a) Topology I (b) Topology II.
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FIGURE 6.17 Examples of 3 DoF configuration. (a) Topology I (b) Topology II.

 2) 3 DoF configuration
  The 3 DoF configuration, as shown in Fig. 6.17(a), means that three con-

trollable independent speeds are available in the hybrid powertrain. There-
fore, the speeds of the vehicle and engine as well as the speed of one of the 
two MGs can be controlled independently. That is, three linearly indepen-
dent equations are required to describe the speed relationship among the 
powertrain components. Since the number of controllable powertrain com-
ponents and the DoF are both three, there is no flexibility in the component 
torque selection when their accelerations are determined. This can also be 
observed from Eq. (6.6): assuming the first three rows of the A* matrix are 
used to calculate the torque commands, the torques from three powertrain 
components are determined based on the desired component acceleration 
because the resistance torque Tload is not a control variable. This phenom-
enon may lead to inefficient system operation. Moreover, the component 
speed will become uncontrollable when the engine is off. Therefore, the  
3 DoF configuration is not suitable for topologies with a single output shaft.
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  By adding an extra output shaft, as shown in Fig. 6.17(b), the 3 DoF 
system will become effective. By connecting the two output shafts with 
the front-rear or left-right wheels, four-wheel drive or the differential 
steering function can be achieved.

 3) Compound-, input-, and output-split configuration
  As introduced in Section 6.3.3, the input-split, output-split, and com-

pound-split configurations all belong to the power-split configuration 
and are collectively known as electrical continuously variable trans-
mission (ECVT) modes. All of these ECVT modes have 2 DoF, which 
enables the decoupling of the engine speed from the vehicle speed.

   The differences between them are the coupling relationship among 
the vehicle, engine, and two MGs. In the input-split configuration, the 
speed of one MG is coupled with the vehicle speed, whereas the speeds 
of the engine and the other MGs are uncoupled with the vehicle speed, 
as shown in Fig. 6.18 (i.e., R R = 2VMG1 VMG2 ). On the contrary, the engine 

FIGURE 6.18 Examples of input-split configuration. (a) Topology I (b) Topology II.
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speed of the output-split configuration is always coupled with one MG 
and is uncoupled with the speeds of the other MG and the vehicle, as 
shown in Fig. 6.19 (i.e., R R = 2EMG1 EMG2 ). If the speeds of the vehicle, 
engine, and the two MGs are not coupled with each other, as depicted in 
Fig. 6.20 (i.e., R R = 4, R R = 4, R = 2, R =2EMG1 EMG2 VMG1 VMG2 VE MG1MG2 ),  
the compound-split configuration is implied. The structural feature 
described previously results in different positions of the power split for 
different ECVT types, as mentioned in Section 6.3.3.

   In addition to these structural differences, one of the MGs in an input-
split configuration that has a fixed gear ratio with the vehicle output 
shaft can provide significant torque assist when launching the vehicle. 
This attribute makes this configuration type more effective than the 
other two types under low speeds and can still be feasible at high speeds 
if the motor’s maximum speed allows. This configuration is widely 

FIGURE 6.19 Examples of output-split configuration. (a) Topology I (b) Topology II.
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applied in Toyota hybrid vehicle fleets. In comparison with the input-
split configuration, the compound-split configuration can provide flatter 
output torque and has a wider speed range. In addition, the existence of 
two mechanical points makes the compound split more efficient under 
some working conditions, such as that at high speeds. Therefore, it is 
employed in some multi-mode HEV such as the Chevrolet Volt Gen2 as 
a high-speed mode to improve the overall vehicle fuel economy. Never-
theless, the output-split configuration has no extraordinary features and 
is therefore rarely used in vehicle production.

                    4)  E-CVT with one motor/two MGs in serial configuration
   An E-CVT with one motor can be viewed as a one-motor case of input-split 

configuration without MG coupling with the vehicle output shaft, as shown 
in Fig. 6.21 (a) (i.e., DoF=2; V 0, V V = 0eng MG1 MG2  , and V + V 0MG1

2
MG2

2 ¹  ).  

FIGURE 6.20 Examples of compound-split configuration. (a) Topology I (b) Topology II.
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However, an ECVT with two MGs in a series is similar to that shown in 
Fig. 6.21 (b), although the two MGs are connected in a series and can be 
considered as one larger MG (i.e., R = 1MG MG1 2

 ).                 
   In this configuration type, the vehicle is still propelled simultane-

ously by the engine and one MG through the PG set. Such a powertrain 
arrangement provides an ECVT function with the help of the MG so 
that the engine speed can be controlled regardless of the vehicle speed. 
However, it does not offer the same flexibility in controlling the engine 
torque. The DoF of this powertrain is 2, but only two controllable pow-
ertrain components are retained, i.e., the engine and one MG. Thus, sim-
ilar to that in the 3 DoF configuration, the DoF of the torque input is 
only one, so the engine torque cannot be arbitrarily assigned when the 
engine is operating at the desired speed.

FIGURE 6.21 Examples of ECVTs with (a) one-motor configuration (b) two MGs in 
serial configuration.
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   Even considering these limitations, some researchers proposed pow-
ertrains including this configuration type because of its ECVT function. 
Yang et al. [10] and Zhu et al. [11] both developed power-split hybrid 
powertrains with a single MG. The uncontrollable engine torque makes 
such a configuration type limited while the vehicle is operated. As a 
result, although it is rarely applied in the vehicles produced, it can be 
used as an intermediate mode in some multi-mode hybrid powertrains 
when mode shift occurs and the component speeds need to be changed 
for clutch engagement conditions.

 5) Engine-only configuration
  In the engine-only configuration, both MGs cannot provide power 

to operate the vehicle, as shown in Fig. 6.22. In this circumstance, 
the output shaft is driven only by the engine with a fixed-gear ratio, 
which is the same as that in a conventional vehicle without MGs. 
Therefore, the advantages of powertrain hybridization disappear, 
which makes this configuration less desirable in multi-mode hybrid 
powertrains.

 6) Parallel with fixed-gear configuration (2 MGs, 2 DoFs)
  The engine in this configuration type is connected to the drive shaft 

mechanically with a fixed gear ratio (i.e., V 0,R = 1eng VE¹ ), whereas 
the speeds of the two MGs are both decoupled from the vehicle speed 
through the PG set (i.e., DoF = 2, V V 0MG1 MG2 ¹ ), as shown in Fig. 6.23.

   This topology is recognized as a parallel configuration because the 
engine speed is coupled to the vehicle speed, which is the same as that 
in parallel HEV. With the help of MGs, the torque of the engine can be 
regulated to achieve higher engine efficiency.

   In this configuration type, since the speed of the MGs can be 
manipulated, higher efficiency could be achieved compared with the 

FIGURE 6.22 Example of engine-only mode.
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FIGURE 6.23 Example of parallel with fixed-gear mode (2 MGs, 2 DoFs).

configuration type in which the MG speed is proportional to the vehicle 
speed. However, this configuration was found to be topologically feasi-
ble only through an exhaustive search; to the best of our knowledge, it 
has not been adopted in any commercialized vehicles.

 7) Parallel with fixed-gear configuration (1 MG/2 MGs, 1 DoF)
  The parallel with fixed-gear configuration is the exact parallel con-

figuration introduced in Section 6.3.1, in which the engine and MGs 
speeds are all proportional to the vehicle speed. If one of the MGs is 
grounded, the topology is parallel with the fixed-gear configuration 
(1 MG, 1 DoF), as shown in Fig. 6.24. Otherwise, the topology is 

FIGURE 6.24 Example of parallel with fixed-gear configuration (2 MGs, 1 DoF).
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marked as parallel with fixed-gear configuration (2 MGs, 1 DoF), and 
both MGs can either assist or recuperate energy from the vehicle, as 
shown in Fig. 6.25.

   Different gear ratios between the engine and the output shaft will 
result in different parallel modes. The 3-PG powertrain can achieve a 
higher gear ratio (up to 14) if the ring/sun gear ratios are determined. 
The higher gear ratios are beneficial for buses, sport utility vehicles, 
and trucks, which require high-traction torque for acceleration, climb-
ing, and towing. In addition, if the gear ratio is appropriate, the parallel 
configuration may have better efficiency than the ECVT modes at high 
vehicle speeds because less energy loss occurs in the electrical path, as 
discussed in Section 6.3.3.

   In addition, the parallel with fixed-gear configuration has the maxi-
mum configuration numbers among all 14 configuration types, as shown 
in Table 6.2. Naturally, this configuration is easily combined with other 
configuration types to form a multi-mode hybrid powertrain.

 8) PEV (2 MGs, 2 DoFs)
  For one of the PEV modes, the speeds of both MGs are decoupled 

from the vehicle speed, which is referred to as PEV (2 MGs, 2 
DoFs). In addition, the engine is always disabled or grounded, as 
shown in Fig. 6.26. Compared with conventional PEV mode, in 
which the MGs are connected with the driveshaft directly, this 2 
DoF PEV can tune the speeds of both MGs to potentially achieve 
higher operation efficiency. Zhang et al. [9] proposed a dual-motor-
driven electric bus adopting this configuration type that achieved 
excellent energy efficiency.

FIGURE 6.25 Example of parallel with fixed-gear configuration (1MG, 1 DoF).
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 9) PEV (1 MG/2 MGs,1 DoF)
  For PEV modes with 1 DoF, the engine is disabled or grounded by a 

grounding clutch, and the MGs are connected with the output shaft 
mechanically with fixed gear ratios as shown in Fig. 6.27 in the 2 MG 
case and Fig. 6.28 in the 1 MG case. Unlike that in the PEV mode with 
2 DoFs, the MGs’ speeds are coupled with the vehicle speed.

   For the PEV mode with two MGs, the torques of the MGs can be 
superimposed to achieve improved launching performance without run-
ning the engine. Moreover, instead of tuning the MG speed in PEV 
mode with 2 DoFs, the torques of both MGs can be manipulated to 
achieve better efficiency while satisfying the driver’s demand.

FIGURE 6.26 Example of PEV (2 MGs, 2 DoFs). (a) Topology I (b) Topology II.
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     6.6 SUMMARY AND CONCLUSION

The growing transportation activities have been not only substantially enhanc-
ing the mobility of people and goods but also producing more greenhouse gas 
emissions and consuming a large amount of energy. Tighter vehicle emission 
requirements are being implemented to lessen the effects of the vehicles on the 
environment, which encourages the development of alternative vehicle propulsion 
and energy storage solutions. One of the potential technologies to lower transpor-
tation sector emissions is the electrified vehicle, which may take several forms, 
such PEV and HEV. Powertrain architecture design, component sizing, and mod-
eling are some of the fundamental technologies used in electrified vehicles. The 
main technologies of electric vehicle design are reviewed in detail in this chapter, 

FIGURE 6.28 Example of PEV (1 MG,1 DoF).

FIGURE 6.27 Example of PEV (2 MGs,1 DoF).
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together with their present state of research, difficulties, benefits, and potential 
future development trends. We anticipate that this chapter will have repercussions 
on the advancement of technology for electrified vehicles.

As reviewed so far, great efforts have been made in the field of topologies 
design and component sizing of electrified powertrains. However, developing an 
electrified powertrain with superior performance remains a challenge. In addi-
tion, the emergence of vehicle automation, connectivity, and artificial intelligence 
technology has provided a great opportunity to further improve vehicle economy, 
dynamic performance, and mobility. The research gaps and future trends are dis-
cussed in the following.

 1) Vehicle design with an in-wheel motor
  An in-wheel motor, which integrates driving, braking, steering, and sus-

pension modules into one unit and is independently controlled, has the 
advantages of high transmission efficiency, quick response time, rea-
sonable axle load distribution, simplified chassis design, and diversified 
powertrain configuration. The in-wheel motor drive also has a lot of 
promise in terms of usage and maintenance, active and passive vehi-
cle safety driving control, and intelligent and networked vehicle design. 
Therefore, designing a reasonable powertrain system with in-wheel 
motors to formulate an in-wheel motor drive PEV while integrating 
vehicle safety, energy-saving, and efficient control needs has become 
difficult a challenge for electrified vehicles design.

 2) Multi-objective hybrid powertrain configuration optimization
  The optimal design of a hybrid powertrain is transformed into a non-

linear multi-objective restricted optimization problem by issues like 
energy efficiency, capital cost, produced emissions, drivability, and ride 
comfort. Vehicle drivability and ride quality throughout the mode tran-
sition are crucial for bringing a multi-mode hybrid powertrain to mar-
ket. Additionally, a more complex powertrain configuration’s effect on 
transmission efficiency hasn’t been rigorously researched yet. In addi-
tion, hybrid technology will soon need to be added to trucks and buses 
due to crucial fuel economy criteria. To satisfy the demands of strong 
acceleration, hauling, and climbing, four-wheel drive operation is a cru-
cial element for both trucks and buses. Therefore, more research into 
four-wheel drive solutions that keep the ECVT function is needed.

 3) Expansion of optimization to connected and automated electrified 
vehicles

  Studies on electric powertrain topologies design and component sizing 
often concentrate on a few common driving cycles, such as inter-urban, 
in-city, and highway, to assess vehicle performance. However, regula-
tory testing that uses a regular driving cycle does not effectively account 
for real-world (or off-cycle) driving behavior. By utilizing look-ahead 
or preview traffic and vehicle information, advancements in vehicle 
connection and automation offer more potential for co-optimization of 
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vehicle dynamics and electrified powertrain control to maximize the 
vehicle performance in real-world driving. Therefore, it is fascinating 
to integrate the co-optimization of vehicle dynamics and powertrain 
control on a single vehicle basis, among cooperating vehicles, or even 
across the entire vehicle fleet, which can be a promising feature in elec-
trified vehicle design for a certain application. This will improve total 
cost, energy economy, and vehicle dynamics.
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       7  Dedicated Thermal 
Propulsion Systems 
for Electrified 
Passenger Vehicles 

Yanfei Li

     7.1  BACKGROUND

The goals of carbon peaking and carbon neutrality and increasingly strict regula-
tions on fuel economy and emissions pose huge challenges for passenger vehicles. 
It is predicted that in the transportation section, more than 50% of the passenger 
cars will still be equipped with internal combustion engines (ICEs); thus, it poses 
a great challenge for the ICEs to realize the goals and how to improve thermal 
efficiency. As a result, carbon-neutral ICEs have become the main motivation for 
ICE research and development. Herein, the main objective of this chapter is to 
present a preliminary overview of the thermal propulsion systems for electrified 
passenger cars in recent years, with an emphasis on the IC engines, including the 
recent advances in IC engine techniques, and the trend for the future development 
to overcome the challenges. Additionally, some potential techniques will also be 
presented, including gasoline compression ignition engines, hydrogen and fuel/
engine co-optimization.

The adoption of two power sources in HEVs provides more degrees of free-
dom to design the powertrain, and different configuration can be found in the 
market. Their advantages and disadvantages can be can be found in recent 
reviews [1]. To date, using advanced artificial intelligence algorithms to realize 
the rapid component sizing of HEV powertrains becomes viable, considering 
the facts, like part performance, cost, lifetime, and so on [2, 3]. However, there 
are some limits for the engine specification selection. Nowadays, in order to 
achieve better fuel economy, more and more advanced and complicated tech-
nologies have been applied, and the engine operation characteristics are varied 
even given engines with the same displacement. Recent studies have demon-
strated that the engine operations and the fuel savings are quite different when 
the HEV architectures are varied [4]. Therefore, how to co-design the power-
train and engine is still an important concern for the automotive industry. In 
spite of the different requirement on engine performance where the powertrain 
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configuration varies, some common points can be achieved for the development 
of dedicated IC engines for HEV.

In contrast to the engines developed for traditional vehicles, the operation 
region for dedicated IC engines for HEVs is much narrower with the power 
assisted from the motor, which could significantly improve the engine part design. 
The engine low-end torque might be ignored, and this will provide the potential to 
further raise compression ratio; the low-engine efficiency zone (part loads) due to 
the pumping loss can also be suppressed. In addition, dedicated IC engines may 
not need to take into account the performance at the high-speed zone (e.g., >4500 
rpm), and this will help improve the camshaft profile and reduce friction loss. But 
it should be noted that for different HEV configurations, some of the engine oper-
ation points might have to be located in the low-efficiency zone, due to the rigid 
connection between the engine and wheels.

Apart from the difference in the engine operation zone between the hybrid 
engines and traditional engines as mentioned before, one of the main differences 
is the intermittent work of the hybrid engines, or say frequent engine start/stop, 
which could raise much higher requirements for the engine aftertreatment systems.

Thus, for hybrid engines, in order to reduce the emissions during the start/stop, 
the requirements on the thermal management and dynamics of the aftertreatment 
systems become higher. Also, the intermittent engine operation could also lead to 
low oil temperature. It will influence the oil performance, such as emulsification 
and oil dilution, and finally influence the lubrication. Furthermore, considering the 
addition of a set of power source (torque motor), it is necessary to reduce the pack-
age volume and mass of the engine in order to fulfill the limited cabin capacity. 
For better drivability, dynamic response of the engine is also demanded.

     7.2  ADVANCED ENGINE TECHNOLOGIES

High-efficiency and clean combustion are not only desirable for traditional engines 
but also core requirements on hybrid engines. Increasing compression ratio is the 
key technology to improve engine efficiency, and the combustion knocking caused 
by high compression ratios is the key obstacle. In the following, the main technol-
ogies used or to be used in dedicated IC engines will be introduced.

     7.2.1  fuel injection 

Generally, for hybrid gasoline engines, two type of fuel supply systems are used 
in the market, port fuel injection (PFI) and direct injection (DI). DI are normally 
used in combination with turbocharging in order to achieve better efficiency and 
higher power output. For engines equipped with the PFI system, they can adopt 
higher compression ratios. Furthermore, it will also significantly reduce the sys-
tem costs. Nowadays, the Naturally-inspired engines equipped with PFI systems 
have achieved the peak brake thermal efficiency of 43.02%, the highest among 
the engines in the market. Nevertheless, DI is still the mainstream technology 
globally.
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The fuel spray process plays an important role in influencing DI engine perfor-
mance. It not only determines the air/fuel mixture quality and the subsequent com-
bustion but also contributes to the emissions very much, especially for PN emissions. 
For DI fuel supply systems, increasing injection pressure could effectively reduce 
the Sauter mean diameter and enhance the fuel/air mixture quality to realize high- 
efficiency combustion and lower PN emissions. Nowadays, the maximum injection 
pressure has reached 50 MPa for the engines launched into the market. Injector noz-
zle design is another key issue to improve the mixture formation by well organizing 
the fuel distribution. For instance, Toyota optimized the injector to enhance fuel 
radial dispersion and reduce the fuel impingement into the cylinder wall [5].

In recent years, flash boiling attracted plenty of attention, not only its frequent 
occurrence in engine operations but also its huge potential to improve atomiza-
tion quality, even with a much lower injection pressure than the injection pressure 
in modern DI engines. However, for the multi-hole injectors, which are widely 
used, the occurrence of flash boiling may cause spray collapse due to the stronger 
jet-to-jet interactions. The change in the original jet orientation could deteriorate 
the mixture formation. Thus, in order to utilize the advances of flash boiling in 
improving the atomization and mitigate the side effect of spay collapse, massive 
studies have been conducted to understand its influencing factors and collapse 
mechanism, and some potential ways are proposed to promote the application in 
engines. The recent studies have shown that the flash boiling also contributes to 
the injector tip wetting, which could produce the tip deposit and PN drift, that is, 
much higher PN emissions compared to clean injectors. Nowadays, adding deter-
gent is an effective way to prohibit the formation of tip deposit.

Injection strategy is another important influence on fuel economy and emis-
sions. It will affect the fuel distribution and the interactions of high-speed jets, 
and charging air may also promote the mixture. Early injection is conducive to 
fuel impingement due to the low ambient pressure, while late injection can lead to 
the less homogeneity of the fuel/air mixture. Via multiple injection strategy, the 
fuel impingement on the cylinder wall can be reduced, mitigating the pool firing. 
Furthermore, by co-ordinating the injection timing and tumble motion, the sprays 
have the potential to enhance the tumble.

     7.2.2  air Motion organization 

The intake port determines the intake flow. With the increase in the flow inten-
sity, the combustion will become more stable and faster. With the increase in 
power density, the combustion duration will be significantly shortened, helping 
reduce the heat transfer loss. Furthermore, more challenges are raised with the 
wide application of exhaust gas recirculation (EGR). The introduction of exhaust 
gas can lower the flame propagation and deteriorate combustion stability. The 
enhancement of intake air motion can offset this disadvantage. However, with the 
increase to the tumble ratio, the port flow co-efficient could go lower. This will be 
more prominent for Miller cycle, and this is the reason why engines with Miller 
cycle normally adopt turbocharging [6].
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For modern hybrid engines, Atkinson and Miller cycles are used instead of the 
traditional Otto cycle to improve engine efficiency. The essence of Atkinson and 
Miller cycles is to increase the expansion ratio by decreasing the effective com-
pression ratio, which can be realized by late intake valve closing (Atkinson cycle/
LIVC) or early intake valve closing (Miller cycle/(EIVC). Both of them could 
dramatically reduce pumping loss, but there are also some differences between the 
two cycles during the engine operations. In the low-speed high-load conditions, 
EIVC could contribute to the charge expansion, and lower charge temperature 
can be obtained, which will be of help achieving a better combustion phasing. 
For Atkinson cycle, the partial charge will be pushed back into the intake port, 
and this will cause the higher intake charge temperature, which will negatively 
influence the knocking. However, it should be noted that EIVC can strongly affect 
the charge motion due to the shorter valve lift than Miller and Otto cycles. The 
tumble intensity can be largely reduced, and the decay time is much longer, which 
may affect combustion stability and the tolerance to exhaust gas. Thus, in order to 
guarantee the engine power output, the engines adopting Miller cycle are normally 
supercharged. Additionally, intake valve masking is also adopted to enhance the 
tumble inside the chamber.

EGR was initially adopted in diesel engines as an effective measure to reduce 
NOx. With the spread of DI in gasoline engines, EGR has been commonly used in 
combination with other technologies (e.g., high compression ratio, turbocharging). 
In addition to the NOx reduction, the adoption of EGR can also reduce throttling 
loss at part loads. With the ever-increasing demand on fuel economy, EGR is also 
found to be a good way to replace fuel enrichment and knocking inhibition. There 
are several types of EGR (e.g., hot EGR, cooled EGR, high-pressure EGR and 
low-pressure EGR) depending on the positions where the exhaust gas is taken and 
where the exhaust gas is introduced in the intake pipe [7]. Roth et al. [8] inves-
tigated different EGR on the engine map and reported that different EGRs have 
their own applicability. Nowadays, low-pressure EGR is the mostly investigated 
and used in practical engines. Furthermore, for low-pressure EGR, Roth et al. [9] 
also proposed the concepts of clean and dirty EGR, representing the exhaust gas 
induction positions before and after the pre-catalyst. With the dirty EGR, in addi-
tion to the better optimization of EGR pipes, it can also have the following advan-
tages: 1) further reduction in the throttling loss, 2) the larger the pressure drop, the 
higher the EGR rate, 3) better cool performance due to the lack of the exothermic 
reactions in the pre-catalyst, and 4) the residual hydrocarbon can be reintroduced 
into the combustion chamber.

Water injection by PFI or DI can broaden the combustion knocking boundary 
by reducing the in-cylinder temperature; thus, it has the potential in increase com-
pression ratio and combustion phasing optimization. It can be realized by both 
PFI and DI. In the PFI mode, water is injected in the intake port or manifold and 
enters the combustion chamber together with the fresh charge. Thus, the water dis-
tribution inside the chamber is homogeneous. But due to the water impingement, 
the water consumption is relatively higher than that of DI. The main advantages of 
water DI are the flexibility in controlling the water amount and distribution inside 
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the chamber by adjusting the injection timing and water/fuel ratios over different 
operating conditions. Generally, the injection strategy should avoid the water film 
formation inside the chamber and be vaporised before the start of combustion. 
Improper injection strategy could cause extinguishment, oil emulsification, higher 
coefficient of variation, and emission deterioration.

     7.2.3  coMBustion organization 

For the timing being, stochiometric combustion is normally adopted for gasoline 
engines launched into the market due to the low-cost three-way catalysts (TWCs). 
Lean burn is another technology that can significantly raise the engine thermal 
efficiency. The lean mixture can increase the specific heat, the low- temperature 
combustion can reduce the heat transfer loss to the cylinder wall and has the 
potential to further increase the compression ratio, and more air sucked into 
the chamber can reduce the throttling loss. The lean burn or ultra-lean burn in  
the engines brings about challenges for the ignition systems. Therefore, innova-
tive ignition systems were intensively investigated in recent years [10]. The pre-
chamber ignition has attracted plenty of attention. By igniting the fuel/air mixture 
inside the prechamber, the flame will travel through the holes in the prechamber 
and produce several high-speed reacting jets, which will then ignite the mixture in 
the main chamber and finally realize the multi-point ignition, shortening the com-
bustion duration. Generally, the traditional spark ignition can be termed as single- 
point ignition, and prechamber can be termed as spatial ignition. Additionally, the 
prechamber ignition can also be divided into two categories: passive and active 
prechamber ignition. For the former one, the ignitable mixture in the prechamber 
comes from the main chamber, while for the latter one, the mixture is obtained by 
the fuel supply system inside the prechamber and can be gaseous or liquid fuel. 
The prechamber ignition is believed to be promising for lean burn. Still, intensive 
work is still being investigated. With the adoptions of the advanced combustion 
technologies, the brake thermal efficiency larger than 50% has been demonstrated 
for the time being [11].

     7.2.4  fuel/engine co-oPtiMization 

Previous technologies to enhance brake thermal efficiency improve the hardware 
or control strategy to boost the air/fuel mixture and combustion. In fact, the phys-
iochemical properties of the fuel are important influences on the efficiency. With 
the advancement of engine technologies (e.g., turbocharging, high compression 
ratio, EGR, and so on), the traditional indices for gasoline should be further eval-
uated to maximize the engine efficiency and optimize the emissions, especially 
in the context of HEV, narrower engine operation range, and the utilization of 
biofuels blended with gasoline. Thus, how to realize the fuel-engine co-optimization 
becomes important by integrating the oil refining and engine manufacturing, and 
intensive studies have been conducted. The most systematic investigation is spon-
sored by US Department of Energy (DoE) Co-Optima program, aiming to identify 



145Dedicated Thermal Propulsion Systems

the critical fuel properties for maximizing engine efficiency and emissions per-
formance, in combination with the advanced combustion modes. Then, six fuel 
properties (i.e., research octane number, octane sensitivity, latent heat of vapor-
ization, laminar flame speed, particulate matter index, and catalyst light-off tem-
perature) were proposed and combined into a unified merit function to evaluate the 
potential for efficiency increase of fuels with conventional and non-conventional 
compositions.

     7.2.5  others 

Apart from the technologies as mentioned previously, there are still a lot of poten-
tial ways to improve thermal efficiency and emissions in terms of combustion 
modes and engine operations.

Engine displacement is one of the key parameters in determining engine power. 
Turbocharging and downsizing were believed to be effective ways to increase the 
thermal efficiency because they can improve the thermal efficiency at the part 
loads. However, with enhanced turbocharging, the knocking tendency at low-
speed high-load conditions becomes more severe and might bring in super-knock. 
Thus, engine rightsizing becomes one of the key objectives during engine R&D. It 
is a compromise among compression ratio, the degree of turbocharging, Atkinson/
Miller cycles, and other technologies in pursuing the optimal fuel economy. In the 
context of HEVs, the selection of engine displacement is quite complicated and is 
relevant with the engine technologies used and the powertrain.

Long stroke (i.e., large stroke/bore diameter ratio) technology can also increase 
the thermal efficiency mainly. For a given displacement and compression ratio, 
larger stroke/bore diameter ratio can obtain smaller volume/surface area ratio, 
mitigating the heat transfer loss. It can also reduce the distance of flame propa-
gation and shorten the combustion duration. Then, the thermal efficiency can be 
improved. Larger S/B can increase the piston speed, but this can be ignored in the 
context of HEV application because the high-speed rotation speed may not exist. 
Another disadvantage for large S/B is the increase in friction loss. Therefore, there 
is a threshold valve for the S/B to obtain the optimal fuel economy.

Cylinder deactivation is another technology worth considering, and its con-
tribution to fuel consumption is realized primarily by the reduction in pump-
ing losses, improved combustion, and reduced oxygen saturation of catalysts 
during deceleration fuel cut events [12]. Additionally, cylinder deactivation can 
also smooth the output torque fluctuation when both engine and motor works. 
Variable compression ratio (VCR), by varying the clearance volume at the top 
dead center, can mitigate the limits of the knocking boundary in traditional 
engines with a fixed compression ratio. Thus, in the non-knocking-limited 
region, higher compression ratio can be used to achieve high efficiency. In order 
to realize the compact design of ICEs, some innovative designs, e.g., the inte-
gration of start-starter-generation with engine flywheel [13], free piston engines 
were also proposed. The new combustion modes, like gasoline compression 
ignition (GCI), also have great potential to contribute to dedicated IC engines 
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for HEV. But still there is a lot of work to do before the launch into the market 
in terms of the reliability and cost.

Recently, hydrogen and ammonia have become hot topics due to pressure from 
the goal of carbon peaking and carbon neutrality. Hydrogen-fuelled IC engines 
can continue thermal propulsion with zero tank-to-wheel CO2 emissions. Also, 
it can be fed H2 with lower purity as well as has much lower production costs. 
Meanwhile, for the research and development of H2-fuelled engines, the com-
bustion system should be significantly improved due to the different air/H2 mix-
ing process and the combustion characteristics from those fuelled with gasoline. 
However, due to the difficulty in the storage and transportation and the lower 
energy density, ammonia, as a H2 carrier fuel and also the representative of hydro-
gen economy 2.0, may become the viable alternative. Still we must confront the 
following challenges: combustion and emissions. First, on combustion, ammonia 
has much lower flame propagation speed and high auto-ignition temperature, caus-
ing the combustion instability and cold start problems. Duel fuel can be possible 
ways to solve the two issues but may increase the cost in fuel supply systems. 
Next, regarding emissions, although ammonia is carbon-free, combustion produc-
tion can include NOx and residual NH3, and this raises the question that dedicated 
aftertreatment systems for ammonia becomes inevitable.

     7.3  HEV EMISSIONS

HEVs have demonstrated their ability to reduce fuel consumption. However, 
emission challenges continue due to intermittent operations, where the majority 
of emissions due to the low exhaust temperature and rich combustion come from. 
Huang et al. [14] compared two pairs of hybrid and conventional vehicles of the 
same model for RDE tests and found that the fuel economy of the HEVs can be 
improved by up to 49%, but there was no reduction in HC emissions and consis-
tently higher CO in contrast the conventional ICE only vehicles. Yang et al. [15] 
compared two HEVs (equipped with PFI and GDI systems, respectively) with 
the engine-only counterparts and reported that the PN emissions are obviously 
higher for HEVs. Furthermore, the GDI-HEV also had higher PN emissions than 
PFI-HEV. Suarez-Bertoa et al. [16] tested two PHEVs under WLTC conditions 
with ambient temperature equal to 23 ℃ and –7 ℃ and reported the modern 
PHEV could emit similar or even higher levels of PN and NOx than the conven-
tional gasoline and diesel vehicles. Furthermore, for the blended PHEV, once 
the vehicle needs higher power out during the charge depleting state, IC engines 
would be engaged with high power command in a short time. This process is 
normally termed as high-power cold starts. The research from the California Air 
Resources Board reported that high-power cold starts could cause significantly 
higher pollution than conventional vehicles. Connectivity and automation are 
believed to be a transformative way to raise fuel economy by the optimization 
of vehicle velocity profile and energy management strategy. However, the study 
by Amini et al. [17] reported that eco-driving could lower the thermal response, 
leading to the increase in HC emissions due to the delayed light off of TWC. 
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For RDE emissions, the most challenging impact is the driving style. Although 
the main power requirements are relatively stable, the huge difference in engine 
dynamics can be found in terms of engine torque, engine speed, and engine 
power, causing the emission species spikes and enhancing the trend of engine 
right-sizing [18]. It also poses the challenges for the aftertreatment systems, e.g., 
fast light-off, better oxygen storage capacity under high space velocity, higher 
PN filtration and more intelligent strategy for GPF regeneration. Recently, in 
order to address the poor performance of TWC during low temperature condi-
tions, electric heating catalysts also have been intensively studied [19]. Thus, in 
spite of the electrified powertrain achieving better fuel economy from differ-
ent ways (e.g., engine start/stop, brake energy regeneration), the energy control 
strategies play an important role in determining emissions. The key for emission 
control is thermal management. Advanced thermal management should be taken 
into consideration for EMS design to realize the optimization of both fuel econ-
omy and emissions, not only the engines and their aftertreatment systems but 
also the vehicle level.

     7.4  SUMMARY AND OUTLOOK

The goals of carbon peaking and carbon neutrality and the increasingly strict reg-
ulations on fuel economy and emissions bring in great challenges for IC engines. 
Electrified passenger vehicles will co-exist with electric vehicles in the mid- and 
long- terms. To address the challenges, intensive efforts have been paid to improve 
fuel economy and emission performance. For engines in the context of electrified 
passenger vehicles, the advancement in air organization, fuel delivery, and com-
bustion organization has been widely applied. The challenges also promote fuel 
diversification of IC engines (e.g., hydrogen, ammonia) and much closer collabo-
ration between oil refineries and engine manufacturers to realize the fuel/engine 
co-optimization and application of advanced combustion modes. However, for the 
further development of dedicated ICEs for HEV, there are still necessary work to 
do, including advanced control strategy integrating the power management and 
thermal management, dedicated key parts (e.g., injection, turbocharging and after-
treatment systems) and material compatibility with advanced fuels.
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       8  Thermal Management 
in E-Mobility Systems 
Based on Heat Pump 
Air Conditioner 
 Fundamentals and 
Key Developments

Zhi Li, Xiaoli Yu and Ruicheng Jiang

     8.1  INTRODUCTION

E-mobility systems have experienced giant advances in recent years since the 
carbon neutrality strategy has received broad consensus around the world [1]. 
Especially in transport sectors, electric vehicles (EVs) are replacing conventional 
fuel vehicles at an unprecedented speed due to their superiority in high energy- 
efficiency and low carbon emissions, and the share of EVs has grown significantly 
in the past ten years [2, 3]. For fuel vehicles, the heating load of vehicle cabins 
under cold winters can be totally satisfied by the waste heat of internal combus-
tion engines [4], but that is not the case for EVs since the electricity consumed by 
heating devices is provided by batteries. It is predicted that there will be more than 
two billion EVs on the road by 2035 [5], and an efficient heating method remains a 
major bottleneck for further development of EVs. Positive temperature coefficient 
(PTC) electrical heaters used to be the main heating method for EVs due to their 
simple structure and low cost. Previous results demonstrated that the energy con-
sumption to meet the heat load by sole PTC accounted for more than 30% of the 
total energy during the driving process of EVs [6, 7].

In order to improve the thermal efficiency of heating under cold conditions, 
heat pump air conditioners (HPAC) have been gradually instituting PTC in EVs 
because HPACs possess the advantages of high efficiency and can effectively pro-
long the driving mileages of EVs [8]. However, PTC is also used to provide back-up 
heating capacity when HPAC cannot satisfy the heating load under extremely cold 
conditions. Meanwhile, the heating capacity and coefficient of performance (COP) 
of HPAC decline significantly with the decrease of the ambient temperature; thus 
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the energy efficiency of HPAC needs to be further improved [9]. Considering the 
waste heat generated by batteries, electric motors and motor controllers, HPAC 
integrated with a waste heat recovery (WHR) unit has been proposed to utilize this 
waste heat and achieve a higher COP in recent years, and these novel combined 
systems have been applied in some popular EVs as shown in Table 8.1.

Although heat pump air conditioners have better comprehensive performance 
than conventional heating methods, there are also some challenges hindering the 
further development and application of HPAC. On the one hand, HPAC generally 
adopt organic refrigerants (R134a and R407c) as working fluids, and the leak of 
working fluids will cause severe greenhouse effect [10], especially when the num-
ber of EVs grows. As a result, developing novel environmentally friendly working 
fluids such as CO2 and R1234yf is quite important. On the other hand, operat-
ing conditions of HPAC cannot always be maintained under steady state since 
the ambient temperature and heat load of EV cabins are variable. Proper control 
strategies are indispensable for the safe and efficient operation of HPAC for EVs. 
Furthermore, there is an apparent trend that the thermal management of HPAC 
will be combined with the temperature control of batteries, motors, and motor 
controllers, forming an integrated intelligent thermal management system in EVs 
[11]. The integrated thermal management system with intelligent control strategies 
can achieve higher energy efficiency and lower power consumption.

Considering these giant advances and existing challenges of HPAC for EVs, 
this chapter aims to give an overview of HPAC for EVs. Firstly, different typical 
HPAC system protypes are concluded from the aspect of energy and environmen-
tal performance, including the conventional air source heat pump air conditioner 
systems, HPAC with WHR systems, and CO2-based HPAC systems. Then the 
intelligent thermal management of single HPAC systems and integrated HPAC-
batteries-motors systems are summarized. With the information and knowledge 

TABLE 8.1
Heating Methods Used by Different Car Company in Recent Years
Car company Brand Year to market Heating method

BMW i3 2013 PTC

Renault zeo 2013 PTC

Nissan Leaf 2013 PTC

Volkswagen New Golf 2017 PTC, HPAC+WHR

Jaguar I-Pace 2018 PTC, HPAC+WHR

SAIC Ei5, MARVEL X 2018 PTC

NIO ES6 2018 PTC, HPAC+WHR

Tesla Model Y 2019 PTC, HPAC+WHR

Geely Geometry C 2020 PTC

ZEEKER 001 2021 PTC, HPAC+WHR

XPENG P5 2021 PTC, HPAC+WHR
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FIGURE 8.1  Basic layout of air source heat pump system.

concluded in this chapter, the development and optimization of future HPAC sys-
tems can be expedited.

     8.2  KEY DEVELOPMENTS OF HEAT PUMP AIR CONDITIONERS

The air source heat pump air conditioner is the typical system used in electric 
vehicles. In recent years, this system has been modified for the sake of higher 
energy efficiency and better environmental performance. The main solution to 
improve the energy efficiency of air source HPAC is to recover waste heat from 
batteries, electric motors, and motor controllers, and many studies focus on the 
design and optimization of novel HPAC-WHR combined systems. Developing 
more environmental working fluids is also an important issue for HPAC systems, 
especially adopting CO2 as the working fluid has attracted lots of attention in the 
last few years. The high operating pressure of CO2-based HPAC systems requires 
more efforts to improve the system design and optimization. Therefore, this sec-
tion will give an overview of different typical HPAC systems.

     8.2.1  air source heat PuMP air conDitioner systeMs 

The schematic diagram of the air source heat pump air conditioner is shown in 
Figure 8.1. The liquid working fluid absorbs the heat from air and becomes vapor, 
then the vapor working fluid is compressed as high-temperature vapor. Later, 
the high-temperature vapor condenses at the condenser and the released heat is 
transferred to the cabin by the fan. Finally, the exhausted liquid working fluid is 
throttled by the expansion valve and starts a new cycle. The air source HPAC can 
achieve a relatively comfortable thermal environment of the cabin under very cold 
ambient conditions, but it consumes large amounts of energy derived from batter-
ies. To avoid the shortage of heat capacity, PTC heaters are widely applied as aux-
iliary heating in EVs [12]. HPAC systems possess superiorities in simple system 
configuration and high safety. According to the second law of thermodynamics, 
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the COP of HPAC can exceed 1, and it can be further improved by system optimi-
zation and control.

Air source HPAC systems generally adopt R134a as the working fluid. Suzuki 
and Katsuya [13] first proposed the protype of R134a HPAC for EVs, and the 
schematic diagram is shown in Figure 8.2. The proposed system provided multi 
functions including heating, cooling, demisting, and dehumidification. The exper-
imental results indicated that the heat capacity and COP could attain as large as 
2.3 kW and 2.3 under the ambient temperature of −10 ℃. Working fluids play an 
important role in heating performance of HPAC systems. Wang et al. [14] com-
pared the heating performance of R134a and R407C HPAC systems for EVs under 
the ambient temperature of –10 ℃, and the performance comparison is depicted 
in Figure 8.3. The results showed that the heating capacity and compressor power 
of R407C system increased compared to R134a system, and the R407C system 
achieved a heating COP of 2.3. In addition to working fluids, operating conditions 
also affect the heat performance of HPAC systems. Lee et al. [15] investigated 
the steady state and start-up performance characteristics of air source HPAC with 
R134a as working fluid for cabin heating in a passenger EV. Although the exper-
imental results illustrated that the heat COP and capacity could be as high as 3.3 
and 3.1 kW at the ambient temperature of –10 ℃, the observed heating and tran-
sient performance of HPAC could be insufficient to satisfy the heating load of EV 
cabin, which implied the importance of hybrid heat methods or further improving 
the energy efficiency of HPAC under cold conditions.

     8.2.2  heat PuMP air conDitioner systeMs With Waste heat recovery 

As the ambient temperature decreases, the heating capacity and COP of the HPAC 
decrease significantly. One of the most important solutions is to utilize the waste 
heat from the motors, motor controllers, and batteries. Heat pump air conditioners 
combining waste heat recovery (HPAC-WHR) systems are conducive to improving 

FIGURE 8.2  Schematic diagram of R134a HPAC for EVs.
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FIGURE 8.3 Performance comparison of HPAC using R134a and R407C: (a) variations of 
saturation pressure and latent heat with saturation temperature; (b) COP and thermodynamic 
perfectibility.

the energy efficiency of EVs and have advantages in cost and technical maturity. 
Ahn et al. [16–18] conducted a series of studies to investigate the performance of 
HPAC with waste heat recovery. In 2014, Ahn et al. [16] proposed a dual-source 
R134a HPAC system including both air and waste heat for EVs. The experiment 
results indicated that the dual-source system outperformed the air source–only 
and waste heat–only HPAC systems in the heating mode, and the results are shown 
in Figure 8.4. However, the heating performance of the dual-source system was 
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greatly dependent on the amount of waste heat when the ambient temperature  
was −10 °C, since the amount of heat absorbed from the ambient air was inap-
preciable under low ambient temperature. In 2015, Ahn et al. [17] proposed a 
dual-evaporator HPAC using waste heat recovery from the dehumidifying process. 
The result showed that COP was 62% higher than that of the conventional HPAC 
system at the indoor air temperature of 13 °C. In 2016, Ahn et al. [18] investigated 
the performance improvement of a dehumidifying HPAC system using an addi-
tional waste heat source in EVs. The heating capacity and COP of the dual-source 
dehumidifying HPAC was found to increase by 75.8% and 5.2% respectively com-
pared with the air source dehumidifying HPAC.

When combining HPAC and WHR, there are different kinds of layouts since 
waste heat can be recovered at different locations of HPAC for further improve-
ment of heating performance. Therefore, different HPAC-WHR systems have 
been proposed and investigated for EVs in recent years. These layouts can be 
divided into three types, namely evaporator-side system, condenser-side system 
and refrigerant-side system. Figure 8.5 shows the schematic diagram of the HPAC 
system that the waste heat is recovered at the evaporator side. The waste heat 
of the motor and motor controller is first absorbed by the coolant of the WHR 
unit, then the waste heat is dissipated into the ambient air at the radiator located 
ahead of the evaporator of HPAC. Then the high-temperature air is pulled in to 
evaporate the working fluid of HPAC by the fan, obtaining a higher temperature 
working fluid of HPAC and achieving the aim of waste heat recovery. Finally, 
the working fluid in a vapor state is compressed by the compressor and releases 
heat to the cabin air. Qian et al. [19] investigated the heating performance of an 
evaporator-side HPAC-WHR system for EV. It turned out that the heating capacity 

FIGURE 8.4 Variations of (a) suction pressure, (b) discharge pressure, and (c) compression 
ratio with waste heat amount and outdoor air temperature in the dual heat source mode.
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and COP were increased by 24.2% and 10.8% respectively compared with the air 
source HPAC system.

Figure 8.6 depicts the schematic diagram of the HPAC system where the waste 
heat is recovered at the condenser side. The waste heat of the motor and motor 
controller is first absorbed by the coolant of the WHR unit, then the waste heat 
is dissipated into the cabin air at the radiator located ahead of the condenser of 
HPAC. Later, the cabin air flowing through the condenser is heated by the work-
ing fluid of HPAC. Finally, it is further heated by the working fluid in the radiator 
of the WHR unit when pulled into the radiator by the fan, achieving the aim of 
waste heat recovery. Yokoyama et al. [7] studied the energy performance of a 
condenser-side HPAC-WHR system for EV. The results indicated that the power 
consumption could be reduced from 850 W to 580 W to satisfy the heat capacity 
of 2 kW when the ambient temperature was below 0 °C.

Figure 8.7 presents the schematic diagram of the HPAC system where the waste 
heat is recovered at the refrigerant side. This system is more complex than the pre-
vious two systems since the working fluid of HPAC is split into two parts to recover 
waste heat from the motor and motor controller. During the working process of 
HPAC, one part of the working fluid evaporates at the evaporator by absorbing 
heat from ambient air, while the other part of the working fluid evaporates at the 
radiator by absorbing heat from the high-temperature coolant of the WHR unit. 
Then these two parts of working fluid converge at the inlet of the compressor. 
Finally, the working fluid releases heat into the cabin air after the compression 
process, achieving the aim of waste heat recovery. Kowsky et al. [20] designed a 
refrigerant-side HPAC-WHR system for heating the cabin air and batteries of EVs. 
The results demonstrated that the proposed HPAC-WHR system could achieve 
a COP of 2.3 to meet the requirement of a heating capacity of 6.5 kW when the 
ambient temperature was below –10 °C, while the corresponding COP were 0.95 
and 1.3 for only PTC mode and HPAC combining PTC mode, respectively.
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FIGURE 8.5  HPAC-WHR system with waste heat recovered at the evaporator side.
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FIGURE 8.7  HPAC-WHR system with waste heat recovered at the refrigerant side.

The energy performance of these three typical HPAC-WHR systems cannot be 
compared due to the different operating conditions in the present studies. To have 
a deeper insight into the advantages and disadvantages of these three HPAC-WHR 
systems and provide theoretical guidelines for the future design of a more effi-
cient HPAC system, it is important to investigate the unified evaluation criteria for 
HPAC-WHR systems. As for the performance evaluation of HPAC-WHR systems, 
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COP is widely used to evaluate energy performance. Compared with traditional 
HPAC systems, HPAC-WHR systems incorporate some additional components, 
including the radiator(s) for releasing waste heat, solenoid valves, coolant pump, 
pipeline, etc. These additional components can affect the performance of HPAC, 
which has not been considered and investigated in previous studies. On the one 
hand, the operations of the pump and fan in the WHR subsystem need additional 
electricity provided by batteries, and the additional components can increase the 
total weight of the EV, causing increased power consumption during the driving 
process. On the other hand, these additional components can cause power con-
sumption that has not been considered in conventional COP. To reflect the effects 
of the WHR subsystem on the energy performance of HPAC, the previous addition 
power consumptions have to be considered when calculating the COP of HPAC-
WHR systems. Except for energy performance reflected by the COP indicator, 
economic and environmental performance of the HPAC-WHR system are also 
important for engineering design and applications. The cost of HPAC-WHR sys-
tems determines whether they can be accepted by the market, while the good envi-
ronmental performance is urgent to meet increasingly rigorous carbon emission 
regulations.

     8.2.3  co2 -BaseD heat PuMP air conDitioners 

Passenger vehicles generally use R134a as the working fluid, while commercial 
vehicles mostly adopt R407C as the working fluid. Either R134a or R407C HPAC 
systems, there is a bottleneck that the heat capacity of systems descends signifi-
cantly when the ambient temperature is lower than –10 °C [21]. Although using 
compressors with larger capacity and expansion tanks can improve the COP of 
HPAC systems by 10% under low ambient temperature [22, 23], the system con-
figurations become more complicated and are not suitable for engineering appli-
cations. Therefore, developing novel working fluids to replace conventional R134a 
and R407C has been an important issue and has attracted increasing attention 
around the world with the fast development of EVs [24, 25].

As a kind of natural working fluid, the ODP of CO2 is 0 while its GWP is 
only 1, therefore, it is environmentally friendly in spite of the leakage sometimes 
[26]. In addition, the CO2-based trans-critical cycle possesses a wide operating 
temperature range and has superiority in heating performance [27]. Therefore, 
CO2 has been extensively investigated as a working fluid of HPAC in EVs in the 
past few years, and it is very promising to be the replacement of R134a and R407C. 
The layout of CO2 HPAC is identical to that of conventional R134a HPAC, but the 
operating temperature and pressure of CO2 HPAC is quite different. For a CO2- 
based HPAC of EVs, the temperature of the heat releasing process is higher than 
the critical point of CO2, and CO2 only releases sensible heat to the cabin air. 
Since there is no phase change during the heat releasing process, the condenser 
in a conventional HPAC is called a gas cooler in CO2-based HPAC. Trans-critical 
CO2 cycle is theoretically less efficient than vapor compression cycle under the 
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same conditions, and the reasons lie in the following two aspects. On the one 
hand, the average temperature of CO2 at the heat releasing process is high and 
the heat loss is also large in this process. On the other hand, the pressure differ-
ence of CO2 at the inlet and outlet of expansion device is large, leading to more 
exergy destruction [28]. Although the pressure difference of the trans-critical 
CO2 cycle is large, its pressure ratio is only about 3 while the pressure ratio of 
the compression cycle for other refrigerants reaches about 8, so the compressor 
of the trans-critical CO2 cycle has higher efficiency and has a higher clearance 
volume and smaller size.

Considering existing blocks of CO2-based HPAC, present studies focus on the 
optimization of system layouts and operating parameters to improve the heating 
capacity and COP. In the trans-critical CO2 HPAC, the pressure difference through 
the throttling device can reach about 6 MPa, which is much higher than that of 
traditional HPAC using other refrigerants and causes the largest irreversible loss in 
the entire trans-critical CO2 cycle. Reducing the throttling loss or recovering the 
expansion work is the key to improving the efficiency of CO2-based HPAC [29]. 
Therefore, an internal heat exchanger (IHX) is generally considered in a CO2- 
based HPAC, and a typical system layout and T-S diagram of a trans-critical CO2 
system with and without internal heat exchanger is depicted in Figure 8.8. IHX 
is used for the heat transfer between high-pressure CO2 after the gas cooler and 
low-pressure CO2 before suction. The supercritical CO2 gas flowing out of the gas 
cooler is subjected to isobaric cooling in the IHX, which reduces the enthalpy and 
dryness of CO2 at the evaporator inlet, and the enthalpy at the evaporator inlet 
and outlet increases, leading to better heat transfer performance of the refrigerant 
in the evaporator. Studies conducted by Aprea et al. [30] and Llopis et al. [31] 
demonstrated that the introduction of IHX could always improve the performance 
of trans-critical CO2-based HPAC, and comparison of COP with and without IHX 
is shown in Figure 8.9. It should be pointed out that the effectiveness of IHX is also 
dependent to the evaporating pressure [32].

FIGURE 8.8 The layout and T-S diagram of a trans-critical CO2 system with and without 
IHX [33].
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Except for IHX, using the technology of adding gas and increasing enthalpy 
is also important, and these kinds of technologies can significantly improve the 
performance of trans-critical CO2-based HPAC in cold regions [34]. Economizer 
and flash tank are two commonly used technologies of adding gas and increasing 
enthalpy, and these two systems are depicted in Figure 8.10 and Figure 8.11, respec-
tively. In the economizer system, the CO2 flows out of the gas cooler and then 
passes through the economizer and the regenerator and is divided into two paths: 
one path is partially throttled to the intermediate pressure (state point 4) through the 
expansion valve 1 and then enters the economizer for heat exchange. It is injected 
into the compressor through the air supply port. The other CO2 is completely throt-
tled by expansion valve 2 after passing through the economizer, and then it enters 
the evaporator to evaporate and absorb heat, later it flows out through the regen-
erator, and finally it enters the gas-liquid separator. The outgoing CO2 enters the 
compressor for first-stage compression and is mixed with the gas entering from the 
air supply port to complete the second-stage compression to become high-temperature 
and high-pressure CO2. In the system with flasher, after the CO2 flows out of the 
gas cooler (state point 3), it enters the flasher for flashing after being throttled by 
the expansion valve (state point 4), and the gaseous CO2 (state point 6) mixed with 
partially compressed CO2 (state point 7 and state point 8). Liquid CO2 (state point 
5) enters the evaporator after being throttled by throttle valve 2 (state point 9).

Heo et al. [35] studied the heating performance of the HPAC system using a 
flash evaporator, and the system diagram is shown in Figure 8.12. The experimen-
tal results showed that the refrigerant flow rate of the system increased at –15 °C. 
The COP and heating capacity increased by 10% and 25% respectively compared 

FIGURE 8.9 Comparison of COP with and without IHX under different ambient 
temperature [31].
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FIGURE 8.10  Vapor injection with economizer for trans-critical CO2 HPAC.

FIGURE 8.11  Vapor injection with flash tank for trans-critical CO2 HPAC.

with the ordinary single-stage heat pump system. Similarly, experimental results 
conducted by Nicholas et al. [36] indicated that 8–12% increase of working fluid 
mass flowrate and 4% decrease of enthalpy difference through gas cooler could be 
observed, resulting in a slight improvement of heating capacity and COP without 
consuming more compressor power. In recent years, different kinds of modifica-
tions have been conducted based on the economizer system and flash-tank system, 
and these novel systems have been theoretically and experimentally proved to 
have obvious enhancement in COP and heating capacity [37–39].

     8.3  THERMAL MANAGEMENT OF HEAT 
PUMP AIR CONDITIONERS

Heat pump air conditioner system is an important part for the thermal manage-
ment of EVs. The operation of HPAC determines the quality of cabin air, and it 
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FIGURE 8.12 The proposed system and performance comparison [35]. (a) System 
diagram (b) Comparison of COP.

relies on thermal management strategies. In terms of thermal management objec-
tives for EVs, both comfort and efficiency need to be considered when design-
ing thermal management strategies since the mileage of EVs is largely related to 
the power consumption of HPAC. With the fast development of EVs and urgent 
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requirements for energy efficiency, thermal management is not only subjected to 
HPAC but also needs to consider the integrated system including HPAC, batter-
ies, motors, and motor controllers. Designing and optimizing intelligent thermal 
management strategies can help improve the comfort of passengers and the energy 
efficiency of EVs.

     8.3.1  therMal ManageMent of inDiviDual hPac

The thermal management of HPAC relies on sensors, actuators, and controllers. 
The sensors mostly include temperature and pressure transmitters. Actuators 
mainly include electric compressor and electric expansion valves, as well as some 
auxiliary device fans and water pumps. The generally used control methods involve 
proportion integration differentiation (PID), model predictive control (MPC), and 
intelligent control methods. PID is a classic control method and has been widely 
used in industries. The control parameters can be obtained by Ziegler/Nichols 
methods [40]. PID control is a relatively flexible and high-performance control 
method. However, HPAC of EVs is a nonlinear system, and it is extremely hard 
to achieve nonlinear control of complex system parameters by using a classical 
PID controller [41]. Fuzzy control has advantages in relatively strong robustness 
and rapid response, and it does not need a specific mathematical model; therefore, 
it is also widely used since its control rules and parameters can be obtained from 
real engineering experiences or optimized by simulation operations [42]. Hu et al. 
[43] developed an efficient-cost advanced control strategy to boost the operating 
performance of an air source HPAC based on MPC method. By using the pro-
posed control-oriented model and objective function, the compressor speed and 
water mass flowrate can be optimized in real time, leading to the minimum power 
consumption of the compressor and water pump in the real operating conditions. 
Wang et al. [44] proposed a novel method to predict the heating capacity and COP 
of R134a HPAC in EVs based on a support vector regression estimator. The pro-
cedure of this method is as follows: data standardization, train/test split, feature 
selection, model optimization, and performance prediction. The simulation results 
demonstrated that the developed method can predict the heating capacity and 
COP within the error of 8.25% and 8.33% compared with experimental results, 
respectively. Tang et al. [45] proposed a novel self-adaptive control strategy using 
dimensionless artificial neural network for frost prevention and retardation in an 
air source HPAC in cold winter.

The preceding studies achieved proper thermal management of individual 
HPAC system by various controllers, considering the different input, output, 
and other variables, and the effects to different extent were proved theoretically 
and experimentally. In summary, traditional HPAC controllers, including on/off 
controller and PID controller, have been widely used in HPAC systems of EVs 
due to their simple control logic and low cost in real engineering applications. 
However, an on/off controller can cause large fluctuations of compressor speed 
and cabin temperature, while a PID controller has relatively poor robustness to 
adapt to the variation of ambient temperature and may cause uncertain results. 
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Fuzzy controller is less able to assure the control precision. Although a Fuzzy-PID 
controller can ensure the control precision, the cost is not appreciable to the total 
HPAC system at present. Intelligent controllers including MPC and ANN-based 
controllers have more accurate control precision and better robustness for HPAC 
of EVs, but the obvious disadvantages of intelligent controllers are their quite high 
cost and calculation resources because they operate in online mode and require 
massive computing power to calculate the real-time feedback of the HPAC system, 
and they are not proper for real-world engineering at this stage.

     8.3.2  therMal ManageMent of integrateD systeM 

The integrated thermal management system of EVs can include batteries, motors, 
motor controllers, and HPAC, and these key components should work under 
proper temperature by using control strategies. The thermal management of the 
integrated system is an important method to improve the mileage of EVs. Ensuring 
that batteries under a suitable temperature range can provide a stable and reliable 
power for EVs, and the performance improvement of the HPAC system can save 
more energy, thereby increasing the mileage of the car. At present, the integrated 
thermal system of EVs is built based on HPAC, and the HPAC is connected to the 
batteries, motors, and controllers by using additional heat exchangers to recover 
waste heat, achieving the comfortable cabin environmental and thermal manage-
ment of these power devices.

Tian et al. [46] proposed an integrated thermal management system consid-
ering the cabin comfort, battery cooling, and waste heat recovery of motors, and 
the system diagram is depicted in Figure 8.13. In this system, the evaporator and 
condenser of HPAC are coupled to the cooling cycle of batteries and motors by 
adding addition parallel heat exchangers, and operations of these heat exchang-
ers are switched by valves according to different seasons. The results indicated 
that cooling capacity required for batteries is reduced by 26.3%~32.1%, while the 
waste heat recovery rate of motors is within the range of 18.7%~45.2%. In addition, 
recovering the waste heat of motors improved the heating COP by 25.6% and mile-
age by 31.7% compared with those of the PTC method. Yang et al. [47] designed 
an integrated thermal management system for EVs and conducted a simulation 
study, shown in Figure  8.14. Results demonstrated that the designed integrated 
thermal management system can provide suitable temperature environments for 
the cabin, batteries, and motors. Especially in the winter, the overall power con-
sumption is reduced 16.4%, and the mileage is improved by 18.3% compared with 
PTC heating.

     8.4  OUTLOOK OF HEAT PUMP AIR CONDITIONERS IN EVs 

Heat pump air conditioners seem a more promising solution to satisfy the heating 
requirement of electric vehicles compared with only PTC in cold conditions, due 
to its better performance in energy efficiency and vehicle mileage. Although giant 
advances have been achieved to propel the applications of HPAC in EVs, there are 
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still some key issues to be addressed for the further improvement of performance, 
and these outlooks are summarized as follows.

• Conventional working fluids used in HPAC including R134a and R407C 
are less able to meet the increasingly rigorous requirements of energy and 
environmental performance. As a consequence, developing novel work-
ing fluids is an important direction, including CO2, R1234yf, R290, and 
R410A, for example. Among these substitute working fluids, CO2 is a 
representative one since it is a kind of natural working fluid and the CO2-  
based trans-critical cycle has good heating performance. Meanwhile, 
mixed working fluids using CO2 and other refrigerants can improve the 
cooling performance of HPAC.

• Heat pump air conditioners have better comprehensive performance than 
PTC, and one of the main reasons is that HPAC can improve energy effi-
ciency by absorbing heat from ambient air or the high temperature cool-
ant of EVs. This implies the importance of designing integrated systems 
to combine HPAC and waste heat recovery units for further enhancement 
of energy efficiency. Recovering waste heat from power devices such as 
batteries, motors, and controllers can be considered. There are different 
layouts to integrate HPAC with waste heat recovery units, the matching 
between the heat source and working fluid (thermodynamic cycles) needs 
to be specially focused.

• To ensure the performance of HPAC under different conditions, thermal 
management is quite important. Developing proper thermal management 
strategies is the key issue for a thermal management system. The inte-
grated thermal management system with cost-effective control strategies 
is a future direction since the integrated system can achieve a better over-
all energy efficiency and longer mileage for EVs. An integrated thermal 
management system has more sensors and actuators compared to an indi-
vidual HPAC system as well as more objectives; therefore, intelligent 
thermal management methods deserve more investigation.

• Conventional air source HPAC systems have very simple structures. COP 
is generally used as the evaluation method, and thermal management 
method is also relatively monotonous. For integrated systems, more key 
components and auxiliary electric devices are added. To comprehensively 
reflect the energy, environmental, and economic performance, new eval-
uation criteria should be developed in the future before designing corre-
sponding thermal management methods and control strategies.

     8.5  CONCLUSIONS

This chapter overviews the fundamentals and key development of heat pump air 
conditioners for heating and corresponding thermal management methods in elec-
tric vehicles. HPAC is a substitute technology to PTC due to its high energy effi-
ciency, but further developments and applications of HPAC are subject to energy 



166 Big Data and Electric Mobility

efficiency, working fluid, and thermal management. To achieve higher COP, inte-
grating with HPAC and waste heat recovery of batteries, motors, or controllers 
is promising. Meanwhile, adopting novel working fluids such as CO2 can also 
enhance COP as well as environmental performance, and the system layout needs 
to be re-designed to adapt to the new working fluids. In an integrated system, the 
global demand on the thermal management of HPAC and other power devices is 
inevitable, and proper control strategies to maintain all the objectives under the 
designed temperature environment deserve more efforts in the future.
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     9.1  WHAT IS DRIVING BEHAVIOR?

The term “driving behavior” refers to the set of deliberate and subconscious 
actions and reactions exhibited by an individual while operating a motor vehicle. It 
encompasses a broad spectrum of activities, including but not limited to steering, 
braking, accelerating, and decision-making.

In recent years, there has been an increasing interest in studying driving behav-
ior and its effects on road safety and traffic management. The factors that shape 
driver behavior are diverse and complex, ranging from age, experience, and gen-
der, to attitudes, emotions, and the surrounding driving conditions [1]. These inter-
nal and external factors can have a significant impact on a driver’s ability to assess 
risk and make safe driving decisions, and they can vary from one situation to the 
next, even for the same driver.

Driver behavior can also be categorized according to driver skills and styles, 
including prudence (aggressive versus cautious), stability (unstable versus stable), 
conflict proneness (risk-taking versus risk-avoidance), skillfulness (non-skilled ver-
sus skilled), and self-discipline (law-abiding versus frequent rule violators) [2]. One 
notable area of research that has attracted considerable attention is the use of physi-
ological measures, such as heart rate and brain wave patterns via an electroenceph-
alogram (EEG), to monitor and predict driving behavior. By analyzing changes in 
physiological signals, researchers have been able to detect patterns of behavior that 
are suggestive of hazardous driving or fatigue. Predicting and controlling driv-
ing behavior can be challenging. Some literature describes driving behavior using 
various biological signal data, including electrocardiogram (ECG), EEG, electro-
myogram (EMG), and electrodermal activity (EDA) [3–5]. In general, drivers with 
more favorable attitudes towards a behavior, with a stronger endorsement for the 
behavior from important others and with higher levels of perceived behavioral con-
trol will likely form stronger intentions to engage in the behavior (see Figure 9.1).

https://doi.org/10.1201/9781003302827-12
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     9.2  WHY STUDY DRIVING BEHAVIOR?

Effective traffic management requires understanding and addressing driver behav-
ior as it plays a crucial role in road safety. Human error accounts for many serious 
traffic incidents with a massive portion of them attributed to distracted driving. 
This poses a growing challenge for the traffic system, as it must ensure the safety 
of both its drivers and the public while balancing the cost implications.

     9.2.1  safety 

Since the 1970s, human drivers have been the subject of intensive research in 
various aspects, with most of the existing studies focused on driver behaviors, 
attention, intention, fatigue, and cognitive and neural functions, among others. 
These studies aim to gain a better understanding of the driver’s psychological and 
physiological state to improve driving safety and assist in driving tasks.

The previous data presents a 2020 analysis of traffic accidents caused by vari-
ous driving behaviors. As shown in Figure 9.2, the statistics show that the leading 
causes of road accidents were pedestrians not following traffic rules, excessive 
speeding, and improper lane usage. Drunk driving, violation of traffic signal lights, 
and fatigued driving were also significant factors. The number of traffic accidents 
caused by drivers has been listed in Figure 9.3. These figures underline the impor-
tance of safe and responsible driving practices, such as obeying traffic laws and 
signals, staying within designated lanes, and avoiding driving under the influence 
or while tired. Drivers should remain alert and cautious, especially in high-risk 
areas, to ensure the safety of themselves and other road users. By implementing 
these practices, we can reduce the number of accidents and make our roads safer.

The analysis of driver behavior in traffic accidents is crucial for enhancing traf-
fic safety for autonomous driving vehicles. Despite the anticipated safety benefits 
of autonomous vehicles, there is still a need to address human factors that con-
tribute to accidents, such as driver error and unsafe driving practices. The inves-
tigation of driver behavior in traffic accidents can provide insights into the factors 
that lead to accidents, such as distraction, fatigue, and impairment. By identifying 
these factors, researchers can develop effective interventions and safety measures 

FIGURE 9.1  The framework of planned behavior [6].
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that address the root causes of accidents. It is essential to analyze driver behavior 
in traffic accidents, especially in the context of autonomous driving vehicles. By 
understanding the role of driver behavior in accidents involving these vehicles, 
researchers and policymakers can implement appropriate measures to improve 
traffic safety and prevent accidents. Recent studies have investigated the effects 
of several factors on driver behavior, including the impact of smartphone use on 
driving performance [8], the effects of cognitive load on driver behavior [9], and 
the relationship between driver fatigue and driving performance [10]. These stud-
ies provide vital information that can be used to develop effective interventions to 
promote safe driving practices and reduce the number of accidents on our roads.

     9.2.2  autonoMous Driving 

Driver behavior research in the automotive industry has become more import-
ant and serious. One of the most significant goals is to improve road safety by 
reducing the number of accidents caused by driver misunderstanding. Research in 

FIGURE 9.3  The probability of traffic accidents caused by drivers in 2020 [7].

FIGURE 9.2  The number of traffic accidents caused by drivers in 2020 [7].
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driver behavior is used to develop advanced driver assistance systems (ADAS) and 
autonomous vehicles that can anticipate and react to driver behavior on the road. 
This research can also inform the design of vehicles, road infrastructure, and traf-
fic laws. Research on autonomous vehicles still relies on driver behavior. As shown 
in Figure 9.4. The Society of Automotive Engineers (SAE) autonomous driving 
classification system includes six levels, ranging from Level 0 (no automation) to 
Level 5 (full automation). One principal factor that distinguishes Level 2 (partial 
automation) from Level 3 (conditional automation) is the role of the human driver. 
In Level 2, the driver is still responsible for monitoring the driving environment 
and taking over when necessary. In contrast, Level 3 vehicles can handle most 
driving tasks but require the driver to be able to intervene when prompted. The 
importance of driver behavior in Level 3 automation cannot be overstated, as the 
driver’s ability to respond quickly and effectively to a takeover request can mean 
the difference between a safe and an unsafe driving experience. As the indus-
try moves towards higher levels of automation, it is becoming increasingly clear 
that understanding and optimizing driver behavior will be critical to ensuring the 
safety and effectiveness of autonomous vehicles on our roads.

     9.2.3  energy econoMy 

Another aspect of driver behavior research is to help improve fuel efficiency and 
reduce emissions [12] as shown in Figure 9.5. By understanding how drivers interact 

FIGURE 9.4  SAE levels of driving automation [11].
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with their vehicles, manufacturers can design more fuel-efficient cars and develop 
a system to encourage more eco-friendly driving behaviors. There is one commer-
cial case study from the package delivery company UPS when it implemented a 
system called “ORION,” which stands for “On-Road Integrated Optimization and 
Navigation.” This system uses a combination of data analysis, GPS tracking, and 
driver behavior research to optimize the routes of delivery trucks. By analyzing 
data on traffic patterns, delivery addresses, and driver behaviors, ORION gener-
ates an optimal delivery route for each truck, reducing the number of miles driven 
and minimizing the amount of time spent idling or stuck in traffic. The system has 
reportedly saved UPS over 10 million gallons of fuel and reduced CO2 emissions 
by around 100,000 metric tons per year. Advances in technology and research 
methods have enabled researchers to gain a better understanding of the complex 
nature of driver behavior, and ongoing research in this area will continue to pro-
vide valuable insights into how we can improve driver performance and safety.

     9.3  RECENT DEVELOPMENT IN DRIVING BEHAVIOR

The study of driver behavior has undergone significant progress in recent years, 
driven by the principles of human-machine interaction. This research has followed 
a comprehensive approach that involves analyzing driving tasks, understanding 
cognitive processes, and designing experiments. Advanced equipment, such as 
driving simulators and eye-tracking devices, has allowed for a better understand-
ing of how drivers interact with their environment. Overall, the advancement in 
driver behavior research has provided valuable insights into improving road safety 
and creating more efficient transportation systems.

     9.3.1  ParaDigM of Driver-vehicle interaction 

Due to the shortage of computing power in the past, the electronic control unit 
can only provide a limited development platform for vehicles, resulting in vehi-
cle supervisory control (VSC) with simple control logic. Figure  9.6 shows an 

FIGURE 9.5  The framework of energy management based on driving behavior [13].
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interactive process of conventional VSC, in which state information is environ-
mental condition and the driver’s response to the environment that will be mixed 
and sent to a conventional VSC for operating energy management. However, con-
ventional VSC cannot extract valuable references from a large amount of unknown 
information. Due to having no reliable information to support it, the predictivity 
and adaptability of the system will be seriously restricted. This could be one rea-
son vehicles with conventional VSC pass the laboratory test but still give a defi-
cient performance during real-world driving.

In the past decade, their interactive processes have started to change. The indus-
try realized that at this stage, uncertainties about the environment and the driver 
have been the main reason hindering the overall performance of vehicles. These 
external uncertainties need to be defined and quantified for clean and safe driving. 
However, hybrid electric vehicles (HEVs) designed with extra degrees of freedom 
could increase the difficulty of quantifying external uncertainties and magnify 
the effect on energy consumption. In this case, there is an urgent need for modern 
energy management schemes for HEVs that effectively deal with uncertainty. In 
this work, the author has investigated if there is a conceivable way to improve 
energy management efficiency by considering the impact of human drivers on 
state-of-the-art VSC.

Differing from the conventional VSC, the uncertainty of drivers is considered 
in the design of these VSC. As independent sub-models, they work in parallel with 
the vehicle powertrain. As shown in Figure 9.7, a driver model has been moved 
from a conventional VSC to make a new driver-oriented VSC, that is, a man-ma-
chine system. Uncertainty about drivers can be quantified in the new system and 
state information becomes more abundant. Thus, this form of interaction makes it 
possible to reduce external uncertainties. Although the transfer of a driver model 
may bring new design problems into the VSC, its significance is to break the struc-
tural framework of the conventional system and show driving behavior character-
istics’ effects on HEV energy management finally working towards a new level of 
human-machine fusion.

FIGURE 9.7  Interactive process of driver-oriented VSC.

FIGURE 9.6  Interactive process of conventional VSC.
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     9.3.2  research technical routes 

To guide the development of the driver-oriented supervisory control methodology, 
research technical routes are designed to clarify work contents and the development 
process. As illustrated in Figure 9.8, the driver-oriented VSC with additional driver 
dynamics delivers new opportunities to improve the performance of four critical 
elements of the vehicle system. They are adaptability (ability to adapt to unknown 
driving conditions), global optimality (ability to find the global optimal solution), 
synergy (synergistic promotion for multiple evaluation indexes), and predictabil-
ity (accuracy and length of prediction) [14]. For the new driver-oriented VSC, the 
author plans to break them off from the following four phases individually.

In Phase 1: control rule design optimization, a novel approach of using person-
alized non-stationary inference is proposed to increase the robustness of the rule-
based control system. The difference between the current system to the previous 
ones in the literature is that it introduces real-time driving behavior monitoring to 
increase the robustness of VSC.

In Phase 2: control frame design optimization, the concept of the driver-identi-
fied supervisory control system is introduced, which forms a novel architecture of 
adaptive energy management for HEVs. As a man-machine system, the proposed 
system can accurately identify the human driver from natural operating signals 
and provide driver-identified globally optimal control policies as opposed to mere 
control actions.

FIGURE 9.8  Roadmap for driver-oriented VSC performance.
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Starting from the work in Phase 3, all work is upgraded to an online level, which 
means the process of optimization and control will be simultaneously carried out 
during real-world driving. In Phase 3: controller real-time optimization, a novel back-
to-back competitive learning mechanism is proposed. This mechanism allows con-
tinuous competition between two fuzzy logic controllers during real-world driving.

In Phase 4: predictor real-time optimization, an online predictive control strat-
egy is investigated, resulting in a novel online optimization methodology named 
dual-loop online intelligent programming, which is proposed for velocity predic-
tion and energy-flow control.

     9.3.3  exPeriMental equiPMent 

Using a suitable driving simulator is widely acknowledged to reduce system devel-
opment costs and shorten the development cycle. An effective simulator allows 
for the study of driver behavior and testing of system performance in hazardous 
conditions or situations that are difficult or impossible to replicate in the real world 
[15]. By utilizing a simulator, researchers and developers can thoroughly analyze 
and evaluate various scenarios and conditions, making it possible to improve sys-
tem functionality and safety measures. Moreover, the use of a simulator can also 
reduce the risk of harm or injury to individuals, vehicles, and infrastructure that 
would otherwise be involved in real-world testing. Therefore, driving simulators 
have become an essential tool for the development and testing of ADAS and auton-
omous driving technologies.

Eye-tracking devices have been increasingly used in driver behavior research 
for the identification and analysis of visual attention and eye movements in 
Figure 9.9. By recording eye movements, researchers can gain insights into the 
cognitive processes involved in driving and the factors that impact driver perfor-
mance and safety [16]. The use of eye-tracking devices allows for objective and 
precise measurement of driver behavior and can provide valuable information for 
the development of interventions aimed at improving driving safety.

FIGURE 9.9  Driver’s eye–tracking devices [17].
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The use of EEG devices has become increasingly prevalent in driver behav-
ior research for the identification and analysis of cognitive processes involved 
in Figure  9.10. By measuring electrical activity in the brain, EEG can provide 
insights into attention, perception, and decision-making processes and help to 
identify factors that impact driver performance and safety [18]. The use of EEG 
devices allows for objective and precise measurement of driver behavior and can 
inform the development of interventions aimed at improving driving safety.

Electromyography (EMG) devices (see Figure  9.11) are commonly used in 
driver behavior research to measure and analyze muscle activity involved in driv-
ing. By recording muscle activity, researchers can gain insights into the cognitive 
processes involved in driving and the factors that impact driver performance and 
safety. The use of EMG devices allows for objective and precise measurement 
of driver behavior, which can provide valuable information for the development 
of interventions aimed at improving driving safety. EMG devices can be used to 
monitor muscle activity related to fatigue, distraction, and other factors that may 
impact driving performance.

The driving simulator platform is used for generating real-world cycles. As 
Figure 9.12 shows, data collection is conducted in the cockpit package (supported 
by a Thrustmaster T500RS) with the same scale HEV model with an automatic 
gearbox. This is to make sure the driving characteristics exhibited by drivers are 
under the same constraints and their results are comparable. With respect to real-
world road conditions, the roadmap model used with reconstructed traffic simu-
lates a cyclic undivided highway with uphill, downhill, curved, and straight roads, 
and it is provided by IPG CarMaker. It is developed specifically for testing pas-
senger cars and light-duty vehicles. Users can accurately model real-world test 

FIGURE 9.10  Electroencephalography (EEG) devices [19].



180 Big Data and Electric Mobility

 

FIGURE 9.11  Electromyography (EMG) devices [20].

FIGURE 9.12  Driving simulator platform.

scenarios, including the entire surrounding environment, in the virtual world. To 
reduce the impact of different traffic and road conditions on human drivers, they 
are restricted to the same cycling road conditions and required to follow the speed 
limits, stop signs, traffic lights, and other traffic regulations. It should be noted 
that the driver’s pedal behavior might be dependent on the vehicle, the pedal-to-
torque map, and even the physical pedal resistance feedback.

     9.4  TYPICAL APPLICATIONS

Today, benefiting from informatics’ expansion, plenty of optimization methods 
via information fusion for hybrid vehicles are appearing. As the primary deci-
sion-maker of modern vehicles, the human driver plays a significant role in driving 
safety as well as in eco-driving. Therefore, a vehicle control strategy that seeks a 
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highly optimized performance, which requires optimizing the system composed 
of the vehicle and the driver, needs to explicitly consider driver behavior [21]. The 
main challenge is how to exploit driver-related data to precisely describe driving 
behavior and establish a relationship with the vehicle’s system. Therefore, a rel-
evant literature survey is carried out from three categories: a) driving behavior 
monitoring, b) driving behavior modeling, and c) driver-oriented control method.

     9.4.1  Driving Behavior Monitoring 

Driving behavior monitoring (DBM) refers to the process of using various sens-
ing technologies and machine learning algorithms to analyze driver behavior and 
identify patterns that can inform decisions related to driving safety. DBM involves 
the collection of data related to driver behavior, such as speed, acceleration, and 
steering patterns, and the use of algorithms to analyze this data and identify any 
unsafe behaviors or patterns.

The importance of DBM lies in its potential to improve driving safety by identi-
fying risky behavior and providing timely alerts to drivers as well as informing the 
development of interventions aimed at improving driving behavior. By detecting 
and addressing unsafe driving behaviors, DBM has the potential to reduce the 
incidence of accidents caused by human error, which is a leading cause of traffic 
accidents worldwide.

Under the impetus of global research programs, neuroscience is gradually 
developing its research on human attention and cognition. As one of the essen-
tial functions of the human brain, cognitive function is mainly responsible for 
complex brain activities such as perception, memory, judgment, reasoning, and 
problem-solving. Currently, the most used method for studying cognitive science 
is the analysis of EEG signals. The brain signal produced by the scalp’s surface 
point variation caused by the activity of brain neurons reflects the brain’s func-
tional state. By effectively extracting EEG information and capturing the changes 
in scalp surface potentials, the brain’s activity and function can be explored more 
profoundly [22]. The cognitive workload is the result of the interaction between 
work motivation, task demands, cognition, and behavior when people perform 
tasks [23]. Generally, when task demands are high, ore cognitive workload is 
required [24]. During driving, drivers are often subject to various external factors, 
such as the interference of cognitive workload, which can directly affect the driv-
er’s judgment and cause serious impacts on driving safety.

The driver’s gaze behavior is the main visual feature. Drivers identify effective 
traffic information by looking at the external traffic environment and making judg-
ments to operate. During the process of visual attention, the driver’s attentional 
resources will shift in space. The multi-resource theory model proposed by Wickens 
et al. [25] is shown in Figure 9.13. When multiple tasks have the same demands in 
the same or multiple dimensions, these tasks compete, resulting in reduced time 
sharing and weakened corresponding performance levels. While driving, a certain 
percentage of the driver’s visual channel resources will be occupied by secondary 
tasks such as texting or operating the in-car system, which will compete directly 
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with the primary driving task. When drivers are under a high workload, attentional 
decline may occur, resulting in decreased driving performance. Ma et al. [26] stud-
ied the entire process of the driver’s perception of the environment, identification 
of external traffic information, and finally decision-making and action implemen-
tation. They also compared the effects of answering the phone and using the in-car 
system on attention through experiments. The results showed that attentional loss 
caused by answering the phone made drivers unable to have a complete and accu-
rate understanding of the driving state, resulting in a decrease in situational aware-
ness and decreased driving performance.

In fact, driver behavior recognition algorithms have attracted considerable atten-
tion in the fields of automotive and energy management. With the development of 
advanced sensor technology, machine learning algorithms, and Big Data analysis 
techniques, a variety of driver behavior recognition algorithms have been proposed 
in recent years. These algorithms are mainly used to improve vehicle safety, reduce 
fuel consumption, and optimize energy management. In addition, they have poten-
tial applications in intelligent transportation systems and autonomous driving. Some 
of the recent studies in this area include the use of convolutional neural networks 
(CNNs) for driving event detection [27], fuzzy clustering and hidden Markov mod-
els for driving pattern recognition [28], and dynamic time warping for driver iden-
tification and verification [29]. Moreover, driver behavior recognition algorithms 
have also been integrated with VSC to achieve optimal energy efficiency [30].

     9.4.2  Driving Behavior MoDeling 

Driving behavior differs among individuals. They differ in the way they press the 
gas and brake pedals, the way they turn the steering wheel, and how far away they 
keep when following a vehicle. Consequently, energy management is anticipated 

FIGURE 9.13  Driver perception and decision-making theory.
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to be tailored for each driver according to individual driving behaviors. To realize 
this goal, one way is to assist each driver by controlling a vehicle based on a driver 
model representing the typical driving patterns of the target driver [31]. Driver 
models for individual drivers or a subset of drivers classified based on their driv-
ing behaviors can be trained in offline or online mode. A vehicle controller needs 
to choose an appropriate driver model for supporting the target driver, by distin-
guishing the driver or assigning the model that fits driving behaviors.

Various definitions of a driver’s driving style are caused by many influencing 
factors and possible explanations for the driver’s reaction. Martinez et al. summa-
rized some of these variables listed in Figure 9.14. Given the large numbers and 
that most factors are difficult to measure, it is unreasonable to expect control over 
all of them. A simplified method of actual driving style identification focuses on its 
effect on a single variable, for example, fuel consumption average speed or range. 
However, these indicators may be oversimplified to assess distinct levels of traffic 
congestion and cannot represent a complete driving situation.

Generally, the driving behavior can be treated as an extent within (−1, 1); with −1, 0  
and 1 being mild, normal, and aggressive, respectively [32]. This criterion is  
usually formulated based on the relative fuel consumption or overall efficiency 
rather than the driver’s level of aggressiveness. Manzoni et al. [33] used an esti-
mated value of the fuel consumed during the trip and compared it with a bench-
marked value to calculate the percentage of excessive consumption, indicating 

FIGURE 9.14  Influencing factors on driving style [32].
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additional costs. Corti et al. [34] used an energy-oriented cost function to evaluate 
the driver’s driving style, which estimated the excessive consumption of power. 
However, such classification methods based on whether discrete classes or con-
tinuous indexing are suitable for HEV energy management need to be further 
investigated.

In terms of driving style recognition algorithms, Murphey et al. [35] presented 
a practical approach based on counting aggressive maneuvers, i.e., jerk. The final 
score is based on a percentage, where ‘stays calm’ is in the range below 50%, 
and ‘stays aggressive’ is in the range above 100%, otherwise between 50% and 
100%. Besides, the use of the rules-based (RB) algorithm unifies simplicity, is 
easy to explain and implement, but limits the number of parameters that can be 
managed. Larger sets of variables generate unnecessarily complex rules that can 
be substituted by fuzzy logic (FL) maps. Syed et al. proposed an FL algorithm 
to evaluate the optimal operation of the pedals in HEVs [36]. The algorithm 
can monitor the operation of the gas pedal and brake pedal and then can calcu-
late the appropriate correction value and produce tactile feedback to the driver. 
The author claims that fuel consumption can be reduced by at least 3.5% with 
the mildest driving in the simulated environment without compromising vehicle 
performance. Although the RB and FL algorithms unify the acceptable results 
by achieving simplicity, the quality of the classification is closely related to the 
choice of threshold.

The threshold definition in the RB algorithm decides the robustness of the results 
and requires a lot of data analysis. Unsupervised algorithms do not need to under-
stand the underlying process. In the work of Miyajima et al., a Gaussian mixture 
model was implemented based on the analysis of car-following behavior and pedal 
operation spectrum [37]. The car-following identifiability of the model is 69%, and 
the classification rate of the pedal spectrum analysis in the simulated environment 
is 89.6% and in the field test is 76.8%. The unsupervised algorithm has proved 
its applicability to driving style identification. However, the output needs to be 
guided based on the number of interpretations and clusters. In addition, the clas-
sification performance may be worse than the supervised algorithm. Supervised 
algorithms represent understanding the driving style of the data used for training. 
Augustynowicz applied an Elman neural network to identify driving behavior by 
speed and accelerator pedal position [38]. The Markov model has also success-
fully achieved driving style recognition. Guardiola et al. defended the advantages 
of combining the Markov model with the Monte Carlo application, [39], thereby 
generating random patterns based on previous data in the driving style represen-
tation. Pentland and Liu defended the adaptability of the dynamic Markov model 
to driving style, which was supported by the fact that it is best to capture human 
movements through a series of control steps. To address the real-world problem 
regarding chaotic time series prediction, a driver-centric velocity prediction model 
is proposed for enhancing vehicle intelligent control and advanced driver assis-
tance [40]. This multi-dimensional fuzzy predictor is designed and used to capture 
the complex dynamics of driver behavior and vehicle movement, improving pre-
diction accuracy and enabling more effective control strategies.
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     9.4.3  Driver-orienteD control MethoD 

In the work of Zhang et al., a novel method for driving blocks classification is 
proposed to classify the driving pattern into diverse groups, as opposed to using 
the existing unbroken driving cycles [41]. One concern is that as the driving cycle 
grows, more driving blocks need to be classified. Langari et al. designed a driving 
condition recognition component that uses long-term and short-term numerical 
characteristics of the driving cycle to evaluate the driving conditions, the driving 
style of the driver, and the operation mode of HEVs. Another alternative method 
involves a self-reporting driving behavior questionnaire designed by Zhang et al. 
for offline cluster analysis [42]. Martinelli et al. proposed a machine learning–
based method to continuously characterize the driver by data analysis for built-in 
vehicle sensors [43]. They found that with the features such as cold start-up, cruis-
ing down the motorway, and idling in heavy traffic, they were able to discriminate 
the car owner by an impostor. Adaptability can be also added to the vehicle in 
another form, which is the driving style recognition employed by Yang et al. [44] 
and Tian et al. [45]. Differing from the work of Yang et al., the nearest-neighbor 
method needs labeled learning materials for training purposes as opposed to sta-
tistical classification. An interesting piece of work by Gu et al. proposed a pedes-
trian-aware engine management strategy that considers the environmental effects 
of the vehicles on pedestrians outside of the vehicles. The strategy helps VSC 
switch to EV mode when a cloud server informs them that the density of pedes-
trians has become higher [34]. As Gu et al. stated, an accelerator pedal opening 
and its change rate are considered as inputs of a driving style recognizer, to define 
a driving style factor for optimal control of plug-in HEVs [46]. Driver models 
using fuzzy sets can be well integrated with energy management. However, how 
to establish the mapped relationship between driving style and control actions is 
still a big challenge [47].

A highly dynamic driver model not only is dependent on historical driving 
data but also must consider the current driving data. It utilizes up-to-date driving 
segments of the driver to model, thus ensuring an accurate judgment of predic-
tion trends. Through real-time or regularly updating driver models, their reli-
ability can be relatively guaranteed. The Markov decision process, also called 
stochastic dynamic programming, is mainly used to model and solve dynamic 
decision-making problems. In the work of Guo et al. [48], an onboard learning 
algorithm for Markov chain models is engaged to produce transition probabil-
ity matrices of power requirements. Furthermore, fuzzy encoding technology is 
applied for Markov chain models to add in ports of continuous intervals in rein-
forcement learning-based energy management [49]. Cairano et al. [50] developed 
a self-learning stochastic (model predictive control (MPC) for driver-oriented 
predictive control of an HEV, where using quadratic programming, larger state 
dimension models than in stochastic dynamic programming, can be reconfigured 
in real-time to adapt to changes in driving behaviors. Bichi et al. [51] used a lin-
ear filtering algorithm to estimate a transformation possibility matrix. The driver 
model is learned in real-time, permitting the control algorithm to adapt to various 
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drivers and drivers’ behaviors. Obviously, the price of the improvement is mainly 
to sacrifice computing resources in exchange for high-precision state informa-
tion. As indicated by Moore’s Law, it is anticipated this relation can be gradually 
improved and performed on the actual onboard controller of HEVs for real-time 
energy saving soon.

     9.5  SUMMARY AND OUTLOOK

This chapter provides a comprehensive overview of the research conducted on 
driver behavior and its applications for vehicle supervisory control. Beginning 
with the definition of driver behavior, its significance in the context of energy man-
agement is clarified. The historical development of driver-vehicle interaction is 
discussed as the different research paths have been taken. It highlights the impor-
tance of integrating driver behavior into the control strategies for optimizing vehi-
cle performance and reducing energy consumption. The chapter also delves into 
the specific applications of driver behavior in vehicle supervisory control, such as 
predictive control, eco-driving assistance system, and intelligent route planning. 
It explores the role of advanced technologies, including machine learning and Big 
Data analytics, in developing accurate models for predicting energy consumption 
and optimizing control strategies.

Generally, this is a comprehensive guide that may serve researchers, engineers, 
and practitioners interested in developing more intelligent and sustainable trans-
portation systems. The importance of integrating driver behavior into the design 
and development of vehicle control systems is clear, which has enormous potential 
to reduce energy consumption and mitigate the impact of transportation on the 
environment.
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     10.1  INTRODUCTION

Conserving fossil energy and rationally using renewable energy are inevitable 
demands for the sustainable development of human society [1]. Therefore, low-car-
bon travel tools are people’s future vision and realistic requirements, and it is also 
one of the main development directions of the world’s automobile industry [2]. In 
order to cope with the increasingly severe contradiction between oil and energy 
supply and demand, environmental pollution, and the pressure of carbon dioxide 
emissions, governments around the world have proposed corresponding strategies 
and laws for the energy-saving and emission reduction of automobiles. In order to 
effectively achieve the goal of the dual-carbon strategy [3], the China Association 
of Automobile Manufacturers, together with relevant research institutions and 
experts, has formulated a low-carbon strategy for the automobile industry to 
“achieve carbon peaking in 2028, near zero emissions in 2050, and carbon neu-
trality in 2060” [4]. From January 2020 onwards, according to the EU 2019/631, 
the average CO2 emissions of newly launched passenger cars shall not exceed 
95 g/km, and the average CO2 emissions of light commercial vehicles shall not 
exceed 147 g/km. Once this target is exceeded, a fine of 95 euros per gram per 
vehicle [5]. Encouraged by the Zero Emission Vehicle Act and the Governor’s 
Order implemented in California, more than 400,000  hybrid vehicles have been 
driven on the road [6].

The multi-energy source vehicle represented by PHEV is a focus of develop-
ment direction in the automobile industry. Involved vehicle energy management 
technology has become a focus of automobile research and development due to 
its outstanding performance in the field of energy-saving and emission reduction. 
The rule-based strategy [7–9], as the most basic strategy, is widely applied due 
to its simplicity and practicality. However, it cannot obtain the globally optimal 
solution. To achieve better performance in the fuel economy of MEVs, optimiza-
tion-based energy management [10–12] control strategies have been developed, 
which mainly include instantaneous optimization [13, 14] and global optimization 
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[15, 16]. Dynamic programming (DP) [17–19], as a typical global optimization 
method, can obtain the theoretical optimal fuel economy, which provides a bench-
mark [20, 21] for assessing the optimality of other energy management strategies.

However, there are four main challenges in the practical application of DP on 
MEVs.

The first challenge is the standardization problem of the DP control strategy, 
which mainly refers to establishing a unified state space model, matching feasible 
work modes and driving conditions, and building a unified global optimization 
framework. For a fixed vehicle model, the selection of state variables and con-
trol variables is slightly different. For example, for a single-axis, series-parallel, 
plug-in hybrid electric bus, the battery state of charge (SOC) is chosen as the only 
state variable, and engine torque (Te) and motor torque (Tm) are chosen as the inde-
pendent control variables according to Wang XM [22]. For Peng JK [23] and He 
HW [24], the DP model has three control variables: Te, ne  (engine speed), and Tm .

To solve the standardization problems of DP, Zhou W established a unified state 
space model of DP based on the work modes of electric vehicles/hybrid electric 
vehicles [25]. Xu Nan concluded the main steps and technical routes of the DP 
control strategy [26]. To achieve superior performance in real-time applications, 
Zhang YJ proposed a novel hierarchical control framework for PHEVs [27], which 
includes an energy utilization plan by iterative dynamic programming and energy 
utilization management by model predictive control (MPC). The majority of the 
research standardizes the DP problem from the perspective of the powertrain con-
figuration or cooperative control strategy. Because energy conversions are related 
to information scenarios and vehicle configurations, the overlap of these factors 
complicates the DP solution process. To quickly obtain an optimal solution, this 
chapter will organically integrate the vehicles, information, and energy to stan-
dardize the DP control processes more effectively.

The second challenge is the real-time application problem of DP on MEVs. 
On the one hand, the implementation of the DP control strategy relies on prior 
knowledge of the driving power demand; that is, the entire trip information should 
be acquired in advance. To avoid the adverse effects of optimal results against 
unknown cycles, the DP method is usually combined with the driving pattern 
recognition method, MPC [28], velocity prediction, or rule extraction. Based on 
driving pattern recognition and DP, Zhang S proposed an adaptive energy man-
agement of PHEVs [29], which recognizes driving patterns by a fuzzy logic con-
troller. Under the MPC framework, Guo JQ [30] proposes an adaptive energy 
management strategy with dynamically updated traffic information. The short-
term velocity is predicted by a deep neural network, and DP is applied to calculate 
the optimal energy distribution at each MPC control step. Analogously, in Ref. 
[31], according to the optimal results of the DP strategy, Peng JK calibrated a rule-
based control strategy to ensure timely control. Three-segment control rules are 
extracted from the DP results and then a load-adaptive rule-based control strategy 
is proposed according to Liu C [32]. Li MC [33] analyzes the offline optimal con-
trol rules of DP under different driving modes and uses a random forest method 
for learning.
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Against the background of intelligent transportation systems (ITSs) [34] and 
automotive Big Data [35, 36], basic information (vehicle state, road conditions, and 
traffic conditions) and derived data (road capacity, driving style or driver behavior) 
are available, which provide an information basis for global optimization energy 
management. With the prior trip information, the global optimal energy distribu-
tion can be realized.

Yet, with the increase in the number of control variables, DP suffers from the 
“curse of dimension” [37] and can only be implemented offline owing to its time 
consumption and tremendous memory. For basic DP, after meshing the state variable 
(grids), the cost-to-go function is calculated backward based on the state transition 
equation, then a forward calculation is performed to search for the optimal control 
consequence. However, this results in a heavy computational burden. In addition, 
tremendous memory is reflected in the storage of the fuel matrix, which involves 
three different approaches: point to point, a highly sparse matrix, and a dense matrix 
with column by column [38]. To ensure the optimality of EMS while improving 
real-time performance, an effective method is to generate SOC reference trajectory 
[39] by fully considering current and future road-traffic information. Based on the 
traffic information, Lei ZZ leveraged a simplified DP [40] to determine the optimal 
SOC trajectory with fast calculation speed. In Ref. [41], Astarita V obtained the 
reference SOC trajectory only by the average velocity information of traffic flow, 
which is smoothed by a one-order low filter for the floating car data. If the battery 
SOC is restrained to fluctuate near a reference trajectory [42], the exploring region 
can be significantly shrunk. Thus, under the deterministic trip information, we will 
propose a fast DP by narrowing the exploring region as much as possible to ensure 
the optimal performance with satisfactory calculation speed.

TABLE 10.1
Nomenclature
MEVs Multi-energy source vehicles

PHEVs Plug-in hybrid electric vehicles

SOC State of charge

MPC Model predictive control

GPSs Global positioning systems

GISs Geographical information systems

DDP Deterministic dynamic programming

HEVs Hybrid electric vehicles

EMS Energy management strategy

DP Dynamic programming

ADP Adaptive dynamic programming

ITSs Intelligent transportation systems

IPE Information layer-physical layer-energy layer

ADHDP Action-dependent heuristic dynamic programming
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With the rapid development of artificial intelligence algorithms and data pro-
cessing technology, neurodynamic programming [43], deep learning [44] rein-
forcement learning [45], and adaptive dynamic programming (ADP) [46, 47], 
as data-driven [48] control strategies, show superior performance due to online 
implementation and approximation of DP results. Due to the strong self-learn-
ing ability and adaptability of neural networks, the ADP method can adaptively 
approximate optimal control and optimal cost function in DP optimizing problems 
to improve the real-time performance of global optimization energy management. 
It is regarded as an effective method to improve the vehicle economy in the case of 
uncertain operating conditions. Thence, aiming to the stochastic trip information, 
we will utilize ADP methods to improve real-time performance while ensuring 
the global optimality.

The third challenge is the accuracy of the results, which mainly refers to 
acquiring comprehensive and accurate trip information and reducing the cumu-
lative errors caused by interpolation leakage [49]. In real-world driving, traffic 
congestion, upgrades or downgrades, and traffic lights are inevitable, which can 
significantly affect the power demand. Thanks to intelligent transportation systems 
(ITSs), geographical information systems (GISs) [50], and global positioning sys-
tems (GPSs) [51], the acquired trip information becomes more realistic and accu-
rate. In Ref. [52] by Gong QM, based on traffic information, DP was applied to 
reinforce charge-depletion control, which showed a significant improvement in fuel 
economy compared with rule-based control. In particular, road grade has a large 
influence on the battery charging and discharging processes; thus, it significantly 
affects vehicle energy consumption. Guo JQ proposed a DP method that considers 
road grades [53]. Considering that the future route is unknown, Zeng XR modeled 
the road grade as a Markov chain in [54]. However, the majority of the literature 
only accounts for vehicle speed and slope, without involving slip rate and gross 
weight. To obtain more accurate driving power demand, we will propose full-factor 
driving data to model trip information, including vehicle speed, slope, and slip rate.

During the backward calculation, if the terminal state is not on discrete grids, 
linear interpolation will be utilized to calculate the optimal cost-to-go function, 
which causes accumulative errors. The basic solution is to reduce the discrete inter-
val as much as possible; however, it will increase the computational burden. To 
address the interpolation leakage issue, Zhou W proposed a level-set DP algorithm 
[49], which uses a level-set function to describe the backward reachable space. To 
avoid interpolation calculations, Zhou W designed a state variable filter to trans-
form the standard linear grid into a nonlinear grid [25]. Aiming to obtain grid-
ded cost-to-go, Larsson V [55] used a local approximation (linear and quadratic 
spline) and derived an analytic solution for the optimal torque split decision at each 
point, which significantly reduced the memory storage requirements. An additional 
module, such as an approximate cost function or the filtration of invalid states, is 
required in the preceding methods, which increases the algorithmic complexity. 
In summary, minimizing the cumulative errors caused by interpolation issues and 
balancing the calculation accuracy and computational burden are key points.
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The last challenge is to satisfy drivability, which mainly refers to restric-
tions on gear shifting and engine start-stop. For vehicles with automatic manual 
transmission, frequent gear shifting will not only accelerate the internal wear 
of the transmission but also make the driver feel tired. Furthermore, frequent 
starting and stopping of the engine will worsen the fuel economy. To obtain the 
optimal engine on-off command, intelligent algorithm, such as a genetic algo-
rithm incorporated with quadratic programming [56], is developed. Compared 
with DP, it can significantly reduce the computational time, but the price to 
pay is additional model approximations (and heuristics) for discrete decision 
variables [57].

To fit for practical conditions, engine frequent start-stop problem, frequent shift 
problem [58], and excessive transient torque response should be considered in a 
DP optimizing process to ensure safety, drivability, and comfort. However, a real-
time EMS, including engine start-stop and gear selection in an optimal control 
framework, is rarely found in previous literatures. Two main approaches can be 
found in several previous studies. On the one hand, a penalty function proportional 
to the number of gear shifts or engine starts/stops is added to the fuel consump-
tion criterion [59, 60]. On the other hand, an additional augmented cost function 
[61] is introduced with multi-criterion cost, which integrates fuel consumption and 
drivability constraints. Multi-criterion performance indexes often use weighting 
factors to adjust the tradeoff between each individual criterion [62]. The selection 
of penalty factors should take the coefficient of fuel consumption as a reference 
and ensure that the battery SOC is within the preset range. To embody the con-
sideration of vehicle drivability, Fan LK added a penalty function containing the 
engine start/stop and gear shifting to the cost function [63]. Unfortunately, once 
penalty factors are selected inappropriately, it will have a significant influence on 
the optimal results. To avoid the weighting factors having adverse effects on the 
optimal results, we will address these constraints from a global perspective. That 
is, relevant constraints will be regarded as restrictions to filter out unsatisfactory 
control sequences.

To solve these problems of DP on MEVs, energy management technology 
based on information and intelligent control stands out with its outstanding perfor-
mance. This type of energy management system obtains all-factor working condi-
tion information and realizes the power control of the power components through 
the utilization of the vehicle power system components and then achieves a rea-
sonable distribution of energy from different energy sources, to reduce fuel con-
sumption and reduce emissions. In other words, working condition information, 
vehicle power system, and energy distribution are the three elements of energy 
management research, and they interact and complement each other to achieve 
optimal vehicle energy consumption. Therefore, a framework of “Information 
Layer—Physical Layer—Energy Layer—Dynamic Programming” (IPE-DP) is 
proposed for global optimal energy management on MEVs. The global optimi-
zation framework organically integrates vehicles, information, and energy, which 
realizes the unity of different information scenarios, different vehicle configura-
tions, and energy conversions.
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     10.2  THE GLOBAL OPTIMIZATION FRAMEWORK OF 
“INFORMATION LAYER—PHYSICAL LAYER—ENERGY 
LAYER—DYNAMIC PROGRAMMING” (IPE-DP)

Essentially, global optimization energy management of the vehicle is based on 
the available trip information to produce the global optimal energy distribution 
by making full use of the characteristics of the vehicle. Based on hierarchical 
thinking, a framework of “Information Layer—Physical Layer—Energy Layer—
Dynamic Programming” (IPE-DP) [64] is proposed, which reveals the energy-sav-
ing mechanism of global energy management.

The framework consists of three main layers, namely, the information layer, 
physical layer, and energy layer, and two interface layers, the interface layer 
between the information layer and physical layer and the interface layer between 
the physical layer and energy layer; there is an application layer in the end. A sche-
matic diagram is shown in Figure 10.1.

According to the correlation between the information, physical, and energy 
layers, the proposed framework has the following properties:

 1) If the trip information in the information layer and the vehicle param-
eters and operation modes in the physical layer are available, then the 
corresponding optimal fuel economy of the vehicle can be obtained in 
the energy layer.

FIGURE 10.1 Schematic diagram of the overall framework (IPE-DP).
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 2) If the trip information in the information layer and the related energy 
constraints in the energy layer are available, the optimal powertrain con-
figuration and the operation modes can be matched.

 3) If vehicle parameters and work modes in the physical layer and related 
energy constraints in the energy layer are available, the corresponding 
economical driving profile can be obtained as well as the optimal traffic 
flow control for traffic signal facilities.

     10.3  THE INFORMATION LAYER—ACQUISITION 
OF FULL-FACTOR TRIP INFORMATION

To acquire more accurate power demand, full-factor trip information is provided 
in the information layer. According to the uncertainty of available information, 
the acquisition of full-factor trip information is realized from three scenarios [65]:

 1) Deterministic information
 For a MEV with a fixed line, trip information can be fully understood 
in advance with ITSs, GISs and GPSs. Simultaneously, the energy sav-
ing potential of a certain vehicle configuration can be explored, which 
provides a benchmark for assessing the optimality of other energy man-
agement strategies.

 2) Information supported by historical data
  Supported by historical driving data, the state transition probability 

matrix can be obtained to reflect the distribution of the trip information.
 3) Information with constraints
  The following subsection will introduce the acquisition of the trip infor-

mation with constraints or historical data.

     10.3.1  inforMation With constraints 

Considering that the entropy will be utilized to measure the uncertainty of the trip 
information, if the influencing factors are not independent, the joint entropy must 
be used to calculate the information entropy. However, the joint probability density 
between certain factors is difficult to obtain or even impossible to obtain. Thus, 
constraints about the drivers, vehicles, and roads are reflected by independent fac-
tors to facilitate subsequent work.

10.3.1.1  Factors about “Drivers–Vehicles–Roads”
By comprehensively considering the constraints from the drivers’ driving style, 
dynamic performances of the vehicle, traffic flow, and road conditions, the factors 
that can characterize the corresponding performance are shown in Figure 10.2.

If only the constraints on the trip information are available, the possible value of 
the trip information at each moment (or location, the same as below) can be limited 
by constraints about the drivers, vehicles, or roads, or combination constraints.
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10.3.1.2  Constraints about “Drivers–Vehicles–Roads”
The factors mentioned before can form corresponding constraints individually or 
in combination. From the aspects of drivers, vehicles, and roads, the constraints 
are divided into the following categories:

 1) Constraints about roads
  On the one hand, tangible constraints refer to constraints imposed by 

concrete objects, which include facilities and instructions.
  Facilities include mainly slopes and traffic infrastructure (such as gates, 

intersections and turntables), which are formed based on natural terrain 
conditions.

 • Slopes and intersections
  Assuming that different routes correspond to different slopes, the 

slope on a fixed route is available. For the fixed road, the slope is 
determined. However, at the intersection, once the driving direction 
changes, the slope changes accordingly.

 • Traffic infrastructure
  At the gates, the vehicle speed reduces to 0. For turntables with traf-

fic lights, the driving rules are related to the external and internal 
signal lights.

   From the perspective of indicative signs, the instructions include 
mainly the traffic lights, traffic signs, and markings.

FIGURE 10.2 Factors about “drivers–vehicles–roads.”
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 • Traffic lights
  When the signal light is red or yellow, the vehicle speed reduces to 0 

before the stop line. Otherwise, the vehicle passes through the signal 
light at the normal speed. If the position of the traffic lights can be 
acquired in advance, the entire cycle can be split into multiple segments.

 • Traffic signs
  In the traffic field, warning signs, prohibition signs, and mandatory 

signs are all traffic signs. For roads with speed limit signs, vehicles 
should follow the speed restriction.

 • Markings
  The markings impose the restrictions on the vehicle speed, driving 

direction, and lane changing conditions (overtaking). For instance, 
when encountering a white diamond pattern, the vehicle must slow 
down and pay attention to pedestrians crossing the road [66].

   However, intangible constraints refer to traffic regulations, which 
are mainly reflected in speed restrictions. If there is no speed limit 
sign, aiming at different roads, different countries or regions have 
different traffic laws, which results in different speed restrictions. For 
example, according to traffic regulations in China, for roads without 
center lines, urban roads have a speed limit of 30 km h/ , and high-
ways have a speed limit of 40 km h/  [67].

   Based on these rules, there exists a maximum or minimum speed 
limit when the vehicle is driving on a certain road.

 2) Constraints about vehicles
  For a fixed vehicle, the average speed is mainly affected by the maximum 

speed, acceleration capability, and braking capacity. The maximum speed 
depends on the maximum power that power components can provide.

The acceleration capability is commonly reflected in the starting 
acceleration time and overtaking acceleration time. According to the 
longitudinal dynamic equation, the maximum acceleration (adm) can be 
determined.

The braking capacity is mainly related to brake performance, tires, 
and road adhesion coefficient. The maximum deceleration (abm) is 
related to the braking intensity (z): a zgbm = .

Because a kinematic fragment usually contains idling, accelera-
tion, uniform speed, and deceleration, the startup time of the vehicle is 
accounted for to characterize the vehicle’s dynamic performance.

 3) Constraints about the combination of roads and vehicles
  When multiple vehicles are driving in a certain area, the vehicle speed 

will be affected by the traffic flow, which reflects the heavy traffic or 
smooth traffic.

In different time periods, based on the space speed survey, the speed 
distribution histogram and cumulative frequency curve of the velocity can 
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be obtained. Generally, the speed distribution agrees with the normal dis-
tribution. That is, it satisfies the following probability density function:
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where vs  is the space mean speed and ss  is the standard deviation (vari-
ance), which reflects the discretization degree of the speed distribution.

According to the cumulative frequency curve of the vehicle speed, the 
85th percentile speed (85% of all vehicles are driving below this speed) 
[68] is regarded as the maximum speed limit to ensure driving safety. 
The 15th percentile speed (15% of all vehicles drive below this speed) 
[68] is regarded as the minimum speed limit to reduce congestion.

The standard deviation of the speed distribution has the following 
approximate relationship with the difference between the 85th percen-
tile speed and the 15th percentile speed [68]:
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  Based on this information, the constraints on traffic flow are transformed 
into speed restrictions.

 4) Constraints about the combination of drivers and vehicles
  For different driving styles, the expected acceleration (deceleration) 

and speed stability will be different. Taking the maximum accelera-
tion (deceleration) as the baselines, the expected acceleration (ade ) and 
expected deceleration (abe ) can be determined by:
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where b  represents the weighting factors of different driving styles, and 
the subscript l  indicates the driving style, which corresponds to 0, 1, or 2.

Furthermore, for different driving styles, the speed stability is different, 
which corresponds to the discretization degree of the speed distribution (ss).
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 5) Constraints about the combination of drivers and roads
  Based on the driving mileage and working seniority, the professional level 

of drivers is divided into five levels: beginner, intermediate, advanced, 
technician, and senior technician. Based on the driver professional classi-
fication, driving ability can be divided into five grades, which are recorded 
as 1, 2, 3, 4, and 5. The higher the value is, the higher the driving ability.

Due to the different types, properties, and functions of roads, it is not 
possible to classify all roads with a single standard. Currently, roads are 
classified first and then graded based on technical standards. According 
to the characteristics and application, the roads are divided into five lev-
els: urban roads, highways, mine roads, forest roads, and country roads. 
Based on the road types, the road difficulty can be divided into five 
grades, which are recorded as 1, 2, 3, 4, and 5. The higher the value is, 
the greater the road difficulty.

By comprehensively considering the road difficulty and driving ability, 
feasible routes can be screened out. The filtering rules can be formulated as

 
,

,
route

if p q

if p q
=

>
≤






0

1

 

 
 (10.5)

where p represents the road difficulty level of this road, andq  represents 
the level of driving ability. The value 1 means that the route is feasible; 
otherwise, it is not feasible.

 6) Constraints about joint constraints
  Based on the driving ability and road difficulty, feasible routes can be 

selected out. From the starting point to the destination, the driving time 
and mileage of each route are different.

Moreover, different routes correspond to different adhesion coef-
ficients. Based on the road adhesion coefficient and speed range, the 
range of the slip rate of each feasible route can be determined.

10.3.1.3  Limitations of Trip Information
Based on the driving time, mileage, and slip rate of each route, the unique route 
and lane can be selected according to different objective functions. The objectives 
mainly involve the shortest driving time, shortest mileage, and so forth.

From the starting point to the destination, all possible routes in this district and 
the corresponding absolute altitude can be obtained by Google Maps. By setting 
the reference point, the slope of each route can be acquired, which composes the 
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k

is the slope at the k st position (or moment, the same as below) of route i , and QL  
is the slope set of the L th route.

The mileage on each route composes the set WL Ll l l={ }1 2, , , . Based on the 
speed limits, the driving time on each route is determined based on the average 
speed, which composes the set WT Lt t t={ }1 2, , , .
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By minimizing the driving time or mileage, a unique route can be determined. 
Correspondingly, the slope is fixed.

Once the route is determined, by integrating constraints about “drivers–
vehicles–roads,” the speed profile (with position or time coordinates, the same 
as below) from the starting point to the destination can be obtained. This pro-
file represents the maximum and minimum speed at each moment.

As shown in Figure 10.3 (a), constraints are represented by arrows, and its effective 
scope is represented by a line segment (the same as below). With the imposed con-
straints, the corresponding speed-distance curve (v x- ) can be determined, which 
can be converted into the speed-time curve (v t- ), as shown in the Figure 10.3 (b).

Simultaneously, once the route is determined, the pavement type is fixed, that 
is, the road adhesion coefficient is determined. By discretizing the driving speed 
at a certain interval, the slip rate can be determined.

In summary, the speed profile, slip rate, and slope are obtained, which lay a 
foundation for determining the work mode in the physical layer.

* ➀  There exists the traffic light, gate, or turntable at point A  and point B, and 
speed restrictions of each section are v vm m1 2, ,vm1;

 ➁  There exist the constraint about restricted traffic flow between point C  and 

point D , and the corresponding speed is limited to v vfm , 
 fn  .

FIGURE 10.3 The schematic diagram of related constraints and speed profile. (a) 
Schematic diagram of the imposed constraints on a certain route (b) The speed limits.

*Different slopes represent different driving styles.
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 ➂  There exists the lane changing (or acceleration behavior) between point E  
and point F , and the speed is limited to v vm n,[ ].

 ➃  The constraint about the combination of vehicle dynamics and roads 
(speed limits, traffic flow, overtake/accelerate).

     10.3.2  inforMation suPPorteD By historical Data 

Within a certain time, the vehicle speed and route selection (at multiple junctions) 
conform to the Markov property. Supported by historical driving data acquired 
from large databases, the state transition probability matrix can be obtained to 
reflect the distribution of the trip information. Generally, the relative altitude and 
slope can be regarded as the state spaces to generate the state transition matrix of 
the slope. With respect to the vehicle speed, due to the diversity of driving cycles, 
multiple state transition probability matrices can be generated to improve the pre-
diction accuracy.

Once the pavement type is determined, the road adhesion coefficient µ is deter-
mined accordingly. With the predicted speed, slip rate can be calculated by the 
magic formula of the tire [69].

     10.4  THE INTERFACE LAYER BETWEEN THE 
INFORMATION LAYER AND PHYSICAL LAYER—
DISCRETIZATION OF THE STATE SPACE

Because the DP problem is a numerical solution, it is necessary to discrete the 
state space, including battery SOC. The discretization process primarily includes 
the following steps.

     10.4.1  BounDary of state feasiBle DoMain 

The available trip information is taken into account to limit the maximum 
charging/discharging current at each moment (or geographic location, the same 
below), which can significantly narrow the state exploring region. Meanwhile, it 
provides ideas for the development of rapid DP strategy.

Once the vehicle speed and powertrain configuration are fixed, the motor speed 
is determined accordingly. Based on the external characteristic of the motor [70], 
the maximum allowable motor power (Pm line_ ) can be determined, which is less 
than the fixed maximum motor power (Pm max_ ). Correspondingly, the maximum 
charging/discharging current (Im line_ ) at each moment can be determined, that is, 
I P Um line m line op_ _ /=1000 .

By considering the trip information, power demand, and external character-
istics of the motor, the transition range of each state point are restricted by the 
maximum charging/discharging current limit. Meanwhile, the boundary of state 
feasible domain can be determined as well as the highest/lowest SOC at each 
moment.
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     10.4.2  griD interval 

To ensure equivalent state transition (SOC) between adjacent moments and no 
drastic change of the number of state points at each moment, state feasible domain 
is discretized uniformly.

In order to balance the contradiction between calculation accuracy and com-
putational burden, the maximum allowable motor and the required power (Preq ) at 
each moment are taken into account to determine allowable battery power, that is, 

, _P k g P k P kbat req m line( )= ( ) ( )( ), where the function g ⋅( ) is described in Table 10.2.
Then, the maximum discrete interval at each moment can be determined by:
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where Uo , Pbat  and Rint  are the SOC, open-circuit voltage, electric power, and inter-
nal resistance of the battery, respectively.

Based on the preceding infomration, an approximate discrete interval (DSOC) 
can be determined.

     10.4.3  feasiBle oMain anD the uMBer of tate oints

The initial SOC (SOC0) and terminal SOC (SOC f ) are regarded as the baselines. 
Based on the maximum SOC, minimum SOC and baselines, state feasible domain 
is divided into multiple areas. A schematic diagram is shown in Figure 10.4.

TABLE 10.2
The Function g ( )⋅

If P kreq ( )> 0 , P kbat ( )= ±{ }0, min P{ }req m( )k P, _ line ( )k

If P kreq ( )< 0 , P kbat ( )=−min P{ }req m( )k P, _ line ( )k

If P kreq ( )= 0 , P kbat ( )= −{ }0, P km _ line ( )

 D    n   s  P  

FIGURE 10.4 The division of state feasible domain.
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It should be noted that the upper and lower boundaries still need to be discret-
ized when the discrete interval is less than DSOC . In each area, the number of dis-
crete points can be calculated based on the highest/lowest SOC (at each moment) 
and the initial/terminal SOC. Then, the total number of discrete points at each 
moment can be determined.

     10.4.4  reachaBle state set 

Starting from the first state point, state points at each moment are numbered 
sequentially from top to bottom. According to the initial/terminal SOC, the high-
est/lowest SOC and the number of state points, the SOC value corresponding to 
each state point can be calculated, which is stored at the corresponding position of 
SOC matrix. It is defined as ,SOC i k( ), which represents the SOC value of the ith 
state point at the moment k .

     10.5  THE PHYSICAL LAYER—VEHICLE MODELING AND 
FEASIBLE OPERATING MODE DETERMINATION

As the physical subject, the modeling of vehicle longitudinal dynamics and 
power components (engine, motor, and battery) is completed in the physical 
layer. According to the driving equation, the required power can be determined. 
With the available trip information, power demand and state matrix, the work 
modes between any two reachable state points are determined in the physical 
layer based on the conservation framework of “kinetic/potential energy and 
onboard energy.”

     10.5.1  systeM architecture anD vehicle MoDeling 

10.5.1.1 Vehicle Powertrain
Multi-energy source vehicles usually consist of engine, drive motor, power battery, 
and electronic control system, which includes a vehicle control unit, a battery man-
agement system, and so forth.

 1) Hybrid vehicle with single electric machine (SEM)
  According to the position of SEM, the hybrid configurations can be 

divided into five categories, as illustrated in Figure 10.5, namely P0  (belt 
driven starter/generator), P1 (SEM mounted on crankshaft), P2  (SEM 
mounted on the gearbox input), P3  (SEM mounted on the gearbox out-
put), and P4 (SEM mounted on the driving axle) [71].

   Generally, the engine state can be on or off; the motor state can be off, 
electric or generate; and the clutch state can be engaging or detaching. 
For a fixed vehicle configuration, once the operating states of the engine 
and the motor are determined, the clutch state is determined accord-
ingly. By combining the possible operating states of various compo-
nents, the feasible work modes can be determined.
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The feasible work modes of each configuration are summarized in 
Table 10.3. Due to structural constraints, regardless of the configuration 
P0  or P1, the motor cannot drive the wheels alone due to the synchronous 
rotation of engine and motor. That is, there is no pure electric mode.

   Once the vehicle speed and vehicle configuration are fixed, the corre-
sponding engine speed and motor speed in each gear can be obtained by 
the dynamic equation.

   By analyzing vehicle configuration, the power balance equation of 
the transmission system is obtained as follows:
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where Preq  is the power demand, Pe  is the engine power, Pbat  is the battery power. 
T T n ne m e m, , , , Pm are the engine torque, motor torque, engine speed, motor speed, 
motor power, respectively.hm is the motor efficiency. When s=−1, the motor acts 
as a drive motor, while, it acts as generator when s=1.

FIGURE 10.5 Topology of the vehicle with SEM. (a) P0 , (b) P1, (c) P2
, (d) P3

, (e) P4
.

* FD-the final drive, M-the motor, GB-gear box, C-clutch, ICE-the engine, B-the battery.
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TABLE 10.3
The Existing Work Modes of Each Configuration ( P ,P ,P ,P ,P0 1 2 3 4 )
structure P0 P1 P2 P3 P4

dynamic n n i i n n i ie w g m w g= =∗ ∗0 0, n n i i n n ie w g m w= =∗ ∗0 0, n n i i n ne w g m w= =∗ 0 ,

work modes working states mode working states mode

  C ICEFD GB M
P0

  

parking/
sliding   C ICEFD GB M

P4 P3

  

parking/sliding mode

  C ICEFD GB M
P0

B   

regenerative 
braking 
mode

  C ICEFD GB M
P4 P3

B  

pure electric mode

  C ICEFD GB M
P0

  

engine-only 
mode

  C ICEFD GB M
P4 P3

B   

regenerative braking mode

  C ICEFD GB M
P0

B   

hybrid mode

  C ICEFD GB M
P4 P3

  

engine-only mode

  C ICEFD GB M
P0

B   

driving 
charging

  C ICEFD GB M
P4 P3

B  

hybrid mode

  C ICEFD GB M
P4 P3

B  

driving charging mode

* × and grey (background) mean that the power component is off. The arrow pointing to the battery indicates that the battery is charging, on the contrary, the arrow 
pointing to the motor indicates that the battery is discharging. Examples (motor M) represent the P1 configuration and P2 configuration, respectively. *ne  is the 
engine speed, nm  is the motor speed, nw  is the wheel speed, ig  is the transmission ratio, and i0  is the final drive ratio.
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    2)  Hybrid vehicle with planetary gear
  The Toyota hybrid powertrain system [72], as a well-known commer-

cial power-split system, is taken as the research object. The structure 
(series-parallel HEV) is shown in Figure 10.6, which consists of three 
power sources and a planetary gear set.

   The planetary gear set (PG) connects three power sources to imple-
ment the power splitting functionality [73]: the engine is connected to 
planet carrier; MG1 (motor-generator) and MG2 are connected to the 
sun gear and the ring gear (corresponding to the driveline output shaft), 
respectively. In addition, MG1 and MG2 are connected to the battery 
through an inverter, which is used to convert DC and AC between the 
battery pack and the motor.

   The MG (motor-generator) can operate in charging and discharging 
mode. By reasonably distributing the state of each gear in the planetary 
row, the vehicle can be operated in different work modes, which are 
listed in Table 10.4.

   For the planetary gear, the relationship between the speed of sun gear 
ws , the speed of ring gear wr  and the speed of carrier wc  is as follows:

 w w wc r s r r s sR R R R+( )= +  (10.8)

  where Rr  is gear number of the ring gear (or ring gear radius), Rs  is the 
gear number of the sun gear (or sun gear radius).

   Ignoring the energy loss during steady state operation, the torque of 
sun gear Ts, the torque of ring gear Tr , and the torque of planetary car-
rier Tc satisfy the following relationship:
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FIGURE 10.6 Powertrain configuration.
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TABLE 10.4 
Work Modes of Toyota Hybrid Powertrain System
Engine MG1 MG2 Mode

´ ´ ´ parking/sliding mode

´ ´ electric pure electric mode

´ generate ´ mechanical braking mode

´ generate electric start

Ö ´ ´ engine-only mode

electric ´ hybrid mode
Ö

generate ´ stop charging mode
Ö

Ö ´ electric hybrid mode

electric electric hybrid mode
Ö

generate electric driving and charging mode
Ö

   Assuming that the connecting shaft is rigid, the speed between the 
engine, MG1, MG2, and the planetary row meets the following relationship:

w wc e= w w
 s M= G1   (10.10)
w wr M= = G w2 0vi / R h

  where i0 is the final drive ratio, Rwh is the wheel radius.
   The engine power and battery power are subject to:

 P P= +
req e Pbat

  P T=
 e eωe / 9550  (10.11)
P T= +n Tη ηs / 9550 n ss / 9550 m MG M1 1G MG1 2MG MG2 2MG

  where P Pe M, ,G M1 2P PG , bat is the power of engine, MG1, MG2, and the bat-
tery, respectively. h hMG1 2, MG  is the efficiency of MG1 and MG2.

10.5.1.2  Vehicle Modeling—the Required Power
According to the longitudinal dynamics of the vehicle, the required power Preq  can 
be formulated as follows:

 P Freq t= v  (10.12)



209Global Control Optimizations of Electrified Vehicles

where Ft  is the vehicle traction, v  is the vehicle speed, both of them are vectors.

10.5.1.3  Engine Model
To analyze and evaluate fuel economy, the engine model is simplified as a static 
map to calculate the fuel consumption:

 M Q T ne f e e= ( ),  (10.13)

where ne  is the engine speed, Te is the engine torque, Me  is the fuel consumption 
of the engine.

10.5.1.4  Electric Machine Model
The efficiency characteristics of drive motor is expressed as the relationship 
between motor speed and motor torque, which can be formulated as

 hm m mf T n= ( ),  (10.14)

where hm is the motor efficiency, nm is the motor speed, and Tm  is the motor torque, 
which is defined as positive during propelling and negative during regenerative 
braking.

Then, the output power of the motor (Pm) can be written as

 P
T

Tm
m m m

m m m

=
 ω η
ω η

/

/ ,

9550

9550

, electric motor

      generator




 (10.15)

10.5.1.5  Power Battery Model
Without the consideration of temperature change and battery aging, a simple but 
effective internal resistance battery model (static equivalent circuit battery model) 
is used to calculate the battery power, which is modeled as a voltage source with 
an open circuit voltage and an internal resistance. Ignoring thermal-temperature 
effects and battery transients, the state of charge (SOC) can be calculated by  
Eq. (10.16):

 SOC SOC
U k U k R k P k

R k Ck k

o o int bat

int
+ = −

( )− ( )− ( )⋅ ( )
( )⋅1

2 4

2
 (10.16)

It should be pointed out that the improved battery models are also applicable to 
the proposed framework. When the SOC value is between 0.2~0.9, there exists 
a linear relationship between open-circuit voltage and SOC [74, 75]. That is, the 
open-circuit voltage can be fitted as U ASOC Bo = + , where, A  and B are the 
coefficients fitted by experimental data.
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     10.5.2  the “kinetic/Potential energy anD onBoarD 
energy” conservation fraMeWork 

10.5.2.1 The Introduction of Energy Conservation Framework
When the vehicle is driving, from the perspective of energy conservation, energy 
distribution is essentially the conversion between kinetic energy, potential energy, 
chemical energy (including electrical energy), and thermal energy, corresponding 
to vehicle speed, altitude, and works done by the motor (electricity consumption) 
and the engine (fuel consumption), respectively. To determine the work mode 
between any reachable state points in the feasible domain, these variables can be 
organically combined to generate various trigger condition for the powertrain’s 
controllable components, then the unique work mode can be determined.

Based on mathematical analysis, a “kinetic/potential energy and onboard 
energy” conservation framework is proposed in the physical layer to determine 
the work modes of the vehicle.

As shown in Figure 10.7, the external factors mainly include the following:

 1) Change in kinetic energy (DEk) of the vehicle between the next moment 
and current moment, which corresponds to vehicle speed.

 2) Change in potential energy (DEp ) of the vehicle between the next 
moment and current moment, which corresponds to the altitude.

 3) Change in mechanical energy (DE ) between the next moment and cur-
rent moment, which corresponds to the sum of DEk  and DEp .

 4) Vehicle speed.

FIGURE 10.7 The schematic diagram of “kinetic/potential energy and onboard energy” 
conservation framework.
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The internal factors mainly refer to the on-board energy, including electricity 
consumption, which is reflected in the change of battery SOC.

Taking the sliding conditions and power comparison into account, the addi-
tional factors mainly include:

 1) Whether the vehicle can slide.
 2) Comparison between the power demand and the maximum allowable 

power of the motor or the engine.

The preceding factors can generate various trigger conditions, and each trigger 
condition corresponds to the unique operation mode of the powertrain’s controlla-
ble components. It can achieve the one-to-one mapping between work mode and 
driving condition, which lays a foundation to determine the cost function (i.e., fuel 
consumption matrix) and control.

It should be noted that the proposed energy conservation framework is appli-
cable to multi-energy source vehicles and single-energy source vehicles. For 
multi-energy source vehicles, onboard energy involves oil-electric mixing,  
electric-gas mixing, or electric-hydrogen mixing, and the conversion is between 
mechanical energy and onboard energy. For single-energy source vehicles, such 
as pure electric vehicles, the onboard energy refers to electrical energy, and the 
conservation is between mechanical energy and electric energy.

10.5.2.2  Determination of the Set of Feasible Work Modes
Based on vehicle speed and altitude obtained in the information layer, the change 
of kinetic energy, potential energy, and total mechanical energy at each moment 
can be determined.

For the meshed feasible domain (SOC), the state transition between any  
two reachable state points is determined, which corresponds to the battery 
power (Pbat ).

In order to reduce the cumulative errors caused by interpolation problem, the 
counteracting thought is adopted to determine pure electric mode. When the 
required power (Preq ) and the battery power between two reachable state points 

satisfy P P Pbat req req− ≤/ e, the corresponding work mode is regarded as the pure 
electric mode. Otherwise, the reachable state corresponding to the pure electric 
mode is determined by interpolation. Therefore, more resulting states in pure elec-
tric mode are on the grids to avoid interpolation calculation. To a certain extent, it 
can reduce cumulative errors caused by the interpolation leakage problem.

For hybrid vehicles with SEM, SOC transition is directly related to the motor 
power. That is, the working state of the motor can be judged based on the SOC 
change. If the SOC decreases, the working state of the motor corresponds to elec-
tric drive. If the SOC rises, the operating state of the motor corresponds to power 
generation. Similarly, if the SOC is maintained, the engine is on, while the motor 
is off. In addition, the comparison between the required power and the maximum 
allowable motor power at each moment is regarded as an additional condition to 
distinguish the pure electric mode and the hybrid mode.
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Different from the hybrid vehicles with SEM, for hybrid vehicles with plan-
etary gear set (PG), the SOC transition is related to the sum of motor power 

P PM M1 2,{ }. Define the following parameters: D min P P PM m M m M m0 1 2 1= { }=_ _ _, ,  

D max P P PM m M m M m1 1 2 2= { }=_ _ _, , D P PM m M m2 1 2= +_ _ , D P Pem3 0= + , D P Pem4 1= + , 
D P P Pem M m M m5 1 2= + +_ _ . Where, PM m1_ , _PM m2 , Pem  are the maximum allowable 
power of MG1, MG2 and engine, respectively.

Then, the comparison between the required power with D0, D1, D2, Pe max_ , D3,  
D4, or D5 is regarded as an additional condition. For example, in the absence of 
sliding conditions, when the SOC decreases, if the required power is less than 

D2 and | /P P Pbat req req−( ) e , the vehicle operates in pure electric mode. Then, by 
comparing the required power with D0, D1, and D2, it can determine whether the 
MG1 works alone or the MG2 works alone or both (work together). Otherwise, the 
vehicle operates in hybrid mode. By comparing the required power with D3, D4, 
and D5, it can determine whether the engine and MG1 work together or the engine 
and MG2 work together or all work together.

Based on the “kinetic/potential energy and onboard energy” conservation 
framework, under each trigger condition, the set of the feasible work mode of the 
powertrain’s controllable components can be determined.

     10.6  THE INTERFACE LAYER BETWEEN THE PHYSICAL 
LAYER AND ENERGY LAYER—DETERMINATION 
OF STAGE COST AND CONTROLS

For the deterministic trip information, based on the “kinetic/potential energy and 
onboard energy” conservation framework, the work mode under each trigger con-
dition can be determined. According to the trip information, the required power 
and DSOC , the engine torque, engine speed, motor torque, and motor speed in 
each gear can be solved based on vehicle dynamics. Correspondingly, the fuel 
consumption of each gear can be determined according to the engine map.

To improve the calculation efficiency, the fuel consumption under each trig-
ger condition is stored in a three-dimensional matrix, defined as fuel matrix 
fuel j i k, ,( ). Where, i  represents the ith state point at the moment k ; j  represents 
the jth state point at the moment k+( )1 ; k  represents the moment (or geograph-
ical location, the same below). The schematic diagram is shown in Figure 10.8. 
Where, Nk represents the number of reachable state points at the moment k, Nm  
represents the maximum number of reachable state points at all moments.

Meanwhile, the corresponding engine power, motor power, engine torque, 
motor torque, engine speed, motor speed, clutch state, and gear state are stored in 
the three-dimensional control matrix P j i ke , ,( ), P j i km , ,( ), T j i ke , ,( ), T j i km , ,( ), 
n j i ke , ,( ), n j i km , ,( ), clutch j i k, ,( ), gear j i k, ,( ), which lay a foundation for search-
ing the optimal control sequence in the energy layer.

For the stochastic trip information, considering the “curse of dimension,” adap-
tive dynamic programming (ADP) is utilized to improve vehicle economy in the 
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case of uncertain operating conditions, which includes one action network and 
two critic networks. Established by a back propagation neural network, the action 
network is used to approximate the control strategy. The utility function (i.e., stage 
cost function) is formulated by state variables and control variables.

     10.7  THE ENERGY LAYER—OPTIMAL ENERGY DISTRIBUTION

Based on the available trip information and cost function, the optimal energy allo-
cation is completed in the energy level.

     10.7.1  the oPtiMal solution unDer the DeterMinistic triP inforMation 

For vehicles with a fixed route, the trip information can be acquired in advance. 
Once the information is determined, a global optimal solution can be obtained by 
deterministic dynamic programming (DDP).

10.7.1.1  Formulation of Deterministic Dynamic Programming (DDP)

 1) State space equation
  To ensure the Markov characteristic of the DP model, the gear state 

must be taken as state variable if the frequent shift problem is consid-
ered. Then, a unified state space equation of the DP model for MEVs 
can be established:

 x f x u kk k k+ = ( ) = …1 1 2 3, , , ,  (10.17)

FIGURE 10.8 The schematic diagram of fuel consumption matrix for deterministic 
information.

* Nk represents the number of reachable state points at the moment k , Nm  represents 
the maximum number of reachable state points at all moments.
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 where the state variable is x SOC v G=[ ], , , and the control variable is 
u T T ue m g= 


, , , ,f x uk k( ) is the system dynamics function, k  is the moment. v  

is vehicle speed, G is the gear,Te is the engine torque, Tm is the motor torque, ug  
is the gear change (upshift, downshift or unchanged, corresponding to 1 1 0, ,- ).

  For the vehicles without transmission, the state space equations are also 
uniformly expressed by Eq. (10.17) by setting G to a constant value.

 2) Constraint conditions
  To ensure the safety of power components, the physical constraints on 

state variables and control variables are considered.
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where ne  is the engine speed, nm is the motor speed, Pbat  is the battery power. 
The subscripts max and min refer to the maximum and minimum limits of 
each variable.

In addition, additional constraints are taken into account to avoid fre-
quent gear shifting, frequent engine stopping and starting, and dramatic 
changes in engine torque. That is,
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 (10.19)

where M  represents the maximum allowable transient increment of engine 
torque, DtG expresses the time maintained at a certain gear, TG  is the short-
est time of gear maintenance. DtE  expresses the working time after the 
engine starts, correspondingly, TE  is the minimum allowable working time 
of the engine.

 3) Cost function
  The objectives of DP strategy on MEVs are to find optimal control 

sequences to obtain the optimal SOC trajectory and minimize fuel con-
sumption over a given driving schedule. Therefore, the optimization 
objective of DP can be expressed as [17]:

 J L x u
k

n

k k= ( )
=
∑

1

,  (10.20)

  where L  is the instantaneous cost at each step, n is the total steps (i.e., 
driving time).
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   According to the optimality principle [76], the optimal cost function 
of each step can be regarded as the minimum fuel consumption at this 
stage. The basic recursive equation of DP can be obtained by

 J x fuel x u J xk k
u

k k k k
k

* *,( )= ( )+ ( )



+ +min 1 1  (10.21)

 u k min J x k
u k

k
* ( )= ( )( )

( )
arg  (10.22)

where Jk
* is the optimal cost-to-go function at state xk in the kth step; 

p* * * *, , ,= ( ) ( ) −( ){ }u u u N1 2 1  represents the optimal control sequence. 
fuel ( )·  is a function of engine torque and engine speed, which represents the 

fuel consumption.

10.7.1.2  Update the Fuel Consumption Matrix
For the transient change of engine torque and gear shift, the unreasonable state 
points can be directly eliminated by updating fuel consumption (redefined as 
infinite, i.e., inf). However, engine frequent start-stop problem and frequent shift 
problem are cumulative problems on the time series. When searching for the opti-
mal solution, unreasonable ones should be removed from a global perspective.

According to engine characteristics (transient-state map), when the load is 
below 30%, the engine does not enter the supercharging zone. There is no limit to 
the transient increment of engine torque. On the contrary, when the load is greater 
than 30%, the transient engine torque cannot change dramatically.

Assuming that the consequence of engine torque is T T T Te e e e
n= …{ }1 2, , , , the torque 

increment is ∆ = − − … −{ }= ∆ ∆ … ∆{ }−T T T T T T T T T Te e e e e e
n

e
n

e e e
n2 1 3 2 1 1 2, , , , , , , as 

shown in Figure 10.9 (a). At the moment k , the maximum allowable engine torque 
(Temax ) can be determined by the external characteristic, as shown in Figure 10.9 
(b). If the ratio of the required power and the maximum allowable engine power 
is greater than 30% (P Preq

k
emax
k/ .³ 0 3), and the ratio of transient torque increment 

and the maximum allowable engine torque is greater than 60% (∆ ≥T Te
k

emax
k/ .0 6),  

FIGURE 10.9 Schematic diagram of transient torque increment and gear shifting (a) 
transient torque increment (b) external characteristic curve (c) gear shifting.
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the fuel consumption is redefined as infinite (inf). Similarly, as shown in 
Figure 10.9 (c), if the transient gear shifting exceeds 1, the fuel consumption is 
redefined as infinite (inf).

Then, the fuel consumption matrix is updated by adding the constraints about 
transient change of engine torque and gear shifting.

10.7.1.3  The Solution of DDP-Optimal SOC Trajectory Domain
To quickly obtain optimal control, a global domain-searching algorithm is pro-
posed, which outputs all solutions in the form of optimal state domain. The global 
domain-searching algorithm mainly involves the following steps:

 1) Sequentially solve and store the optimal cost of each state point to the 
starting point

  In the energy layer, by introducing the idea of graph theory, the fuel con-
sumption matrix is transformed into the distance weight between each 
state point. That is, the optimal energy distribution problem is trans-
formed into the shortest path problem from the starting point (initial 
SOC) to the ending point (terminal SOC).

   From the starting point, the optimal cost (i.e., shortest distance) of 
each state point to the starting point is sequentially solved according to 
the original number, which is stored in a two-dimensional matrix D i j,( ),  
namely, the optimal cost matrix. The optimal value can be solved by:

 D j k min D i k fuel j i k g s V ik, , , , , |+( )= ( )+ ( ) ∈ −{ }{ }1  (10.23)

  where fuel j i k g, , ,( ) represents the fuel consumption under the g th-  
gear from the ith  state point at moment k  to the jth state point at the 
moment k+( )1 . D i k,( ) represents the optimal cost from the start point to 
the ith  state point at the moment k .

To solve the engine frequent start-stop problem and frequent shift prob-
lem, the optimal cost matrix is updated by adding constraints on gear main-
tenance and engine on-off. The specific process is shown in Table 10.5.

 2) Sequentially solve and store the optimal state points at the previous 
moment of each state point

All state points are renumbered, and each state point at each moment 
is sequentially numbered. Numbers are stored in a two-dimensional 
matrix SOC i knumber ,( ), namely, the number matrix, and the correspond-
ing position coincides with SOC matrix.

   Because the same state transition exists in some stages and the solu-
tion of DP optimization is a cumulative calculation of the cost function 
at different stages, there are many equal stage cost functions (fuel con-
sumption) in a certain stage. Therefore, during solving the optimal cost 
function (i.e., shortest distance) from a certain state point to the starting 
point, all the optimal state points should be searched.
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  According to the new number of state points, the serial number of state 
points at the previous moment on the shortest path (i.e., optimal cost 
function) are recorded and stored in the corresponding column of a 
two-dimensional matrix prev , namely, the optimal number matrix, as 

TABLE 10.5 The Process of Constraint Addition in Calculating Optimal 
Cost Matrix
Algorithm 1- Add constraints to update the optimal cost matrix

1. Set the time T TG E,  and initialize D( )1 1, = 0
2. For k n=1 1: :

For j=1 1: : numk+1

For i=1 1: : numk

For g G= M Gk k: :1 N

s i( )= D i( ), ,k f+ uel j( )i k, ,g
record ∆ ∇t tG E,  ← search control matrix: gear,Te

if (∆ ∆t TG G | t TE E< ) && j m> ax{ }T TG E,
s i( )= inf

end
end

D j( ),k m+1 = in{ }s i( )
end

end
end

* n is the total driving time, numk  represents the number of state points at the moment k, numk+1 
 represents the number of state points at the moment k+1.

FIGURE 10.10 The schematic diagram of the optimal number matrix.
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shown in Figure 10.10. The dimension of the matrix prev  depends on 

the number of all state points N , which is calculated by N num
k

n

k=
=
∑

1

.

 3) Search and store optimal state points at each moment in reverse order
  The last state point is the optimal state point of the moment n. Starting 

from the ending point, the number (Nun) stored in the last column of 
matrix prev  can be searched, which is the optimal state point of the 
moment n−( )1  and stored in the n th−( )1  column of a two-dimensional 
matrix P i j,( ), namely, the optimal state matrix.

Then, according to the number Nun, the number stored in Nun th( )  
column of the matrix prev  can be searched. The obtained number is the 
optimal state point of the moment n−( )2 , which is stored in the n th−( )2  
column of matrix P . If there exist multiple numbers Nun Nunm1, ,…{ } at 
this moment, the numbers of corresponding columns stored in the matrix 
prev  can be searched in turn, which are stored in the n th−( )2  column 
of the matrix P . By analogy, the optimal state points are searched in 
reverse order until it reaches the starting point. The schematic diagram 
of the matrix P  is shown in Figure 10.11, which stores the serial number 
of all optimal state points at each moment.

 4) Generate optimal SOC trajectory domain
  To obtain all the optimal SOC trajectories, the serial number of state 

point stored in the matrix P  is reverted to the original number, which 
corresponds to the position of each optimal state point in the SOC feasi-
ble domain.

Taking the medium-speed part of WLTP as an example, based on 
the proposed global domain-searching algorithm, all state points on all 
optimal SOC trajectories can be searched, as shown in Figure 10.12. 
The front view and vertical view reflect the position of each optimal 

FIGURE 10.11 The schematic diagram of the optimal state matrix.
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state point in the SOC feasible domain. It can be seen that all the opti-
mal state points form an optimal trajectory domain. According to the 
distribution of optimal state points, the equivalent optimal states (at a 
certain moment) mostly occur in deceleration or the part of multiple 
continuous rises and falls (within a certain range). The main reason is 
that the parts correspond to multiple optional working modes; hence, the 
battery SOC can fluctuate within a certain range, resulting in the same 
total fuel consumption. Moreover, the position of the optimal state point 
in the SOC feasible domain reflects the general trend of the optimal SOC 
trajectory. Thus, the density of the optimal state points in the lateral view 
can roughly reflect the type of the driving cycle.

Because it is not easy to output all optimal SOC trajectories, all opti-
mal state points are output in the form of optimal domain to improve 
computational efficiency. That is, the optimal SOC trajectory domain is 
generated to obtain the optimal results, which lays a foundation for the 
establishment of fast DP in the subsequent study.

10.7.1.4  The Solution of DDP-Fast DP
To effectively improve the computational efficiency of the global optimization 
algorithm, the direct method is to reduce the reachable state points as much as 
possible. Based on the statistical rules of optimal SOC trajectories, a fast DP is 
developed to improve the real-time applicability of global optimization energy 
management.

FIGURE 10.12 The optimal SOC trajectory domain under the medium-speed of WLTP.
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 1) Generation of reference SOC trajectory
  For a given driving cycle, it can be divided into multiple kinematic seg-

ments. As shown in Figure 10.13, by analyzing the trend of the optimal 
SOC trajectories under different speed distributions with different vehi-
cle models, the following conclusions can be summarized:

 ① If the speed distribution is relatively uniform, the optimal SOC tra-
jectory decreases roughly linearly.

 ② When the speed distribution of a certain segment is significantly 
higher than other segments, the optimal SOC trajectory shows a 
linear downward trend as a whole; however, the optimal SOC tra-
jectory corresponding to the protruding speed is roughly V-shaped 
or inverted V-shaped.

 ③ When the driving time (or mileage) is long enough or the SOC 
range is wide enough, the optimal SOC trajectory will decrease 
roughly linearly, regardless of the type of driving cycle.

  It should be pointed out that the first two conclusions are suitable for the 
situation when the whole driving time is not very long (n s< 2000 ) or 
the SOC range (SOC SOC f0 0 25− < . ) is not very wide.

FIGURE 10.13 Simulation results under different standard driving cycle.
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  Based on the this information, the optimal SOC trajectory obtained by 
DDP strategy declines linearly as a whole. Thus, we set a reference SOC 
(SOCr ), defined as:

 SOC k SOC SOC SOC k nr f( )= − −( )⋅0 0 /  (10.24)

where SOC0 is the initial SOC, SOC f  is the terminal SOC, n is the  
total driving time, k  is the moment.

  The SOC range is set to 0.06. Aiming for a passenger vehicle with P2 
configuration, the upper and lower deviation between the optimal SOC 
trajectories and the reference SOC trajectory under multiple standard 
driving cycles is concluded in Table 10.6.

   Based on the prior analysis, we can conclude that the maximum devi-
ation between optimal SOC trajectories and reference SOC trajectory 
is basically no more than 0.03. Particularly, if the speed distribution is 
relatively uniform and the speed is low (v< 60 km/h), the maximum 
deviation is basically no more than 0.01.

   Therefore, by extending a certain allowable deviation on the basis of 
the reference SOC, a banded-searching region can be formed to narrow 
the state exploring region. According to the average speed, maximum 
speed and so forth, the type of speed distribution can roughly divide 
into three categories: low-speed, middle-speed, and highway (the same 
below). The corresponding SOC allowable deviation (d d d1 2 3, , ) can be 
set to 0.01, 0.02 and 0.03, respectively.

 2) Suboptimal SOC trajectory domain
  To ensure that the theoretical optimal state points do not exceed the 

boundary of the exploring region, the sub-optimal trajectory domain 
is proposed to expand the improved state feasible domain to a cer-
tain extent. By finding the potential connection between sub-optimal 
domain and optimal domain, the exploring region of state variables can 
be narrowed while ensuring the optimality.

   Regarding the optimal SOC trajectory domain (with the minimum 
fuel consumption) as the baseline, the sub-optimal trajectory domain 
can be determined by setting a tolerance. Considering that the sub-op-
timal cost can occur at any moment during the whole trip, the terminal 
moment corresponding to the suboptimal cost needs to be pre-set.

TABLE 10.6
The Upper and Lower Deviation between Optimal SOC Trajectories and 
Reference SOC Trajectory
Cycle CSUDC UDDS NEDC WLTP HWEET

upper deviation 0.008 0.0171 0.008 0.02 0.0115

lower deviation- 0.0056 0.0091 0.03 0.021 0.026
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   According to the tolerance, the reverse searching stops until the 
accumulative cost exceeds the allowable range. The specific process is 
shown in Table 10.7.

The tolerance is set to 10%. Under the same typical driving cycles, the expan-
sion of the suboptimal domain width relative to the optimal domain width is con-
cluded in Table 10.8.

Based on this analysis, the expansion of the suboptimal domain width relative 
to the optimal domain width is basically within the range of 10~15%. To make 
the statistical rule more universal, simulations are performed under different 
vehicle parameters (same category). The results demonstrate that it needs to be 
expanded by 5% on the basis of the original rules (10~15%) to make the optimal 
trajectory domain not exceed the boundary of the exploring region. It should 
be noted that different categories of the vehicle correspond to the respective 
statistical rules.

Regarding the reference SOC trajectory as the benchmark, based on the statis-
tical rules, the simplified state feasible domain can be formed for a fast DP. The 
details are as follows:

Step 1: Determine the maximum deviation of SOC according to speed distribution.

TABLE 10.7
The Process of Sub-Optimal Domain-Searching Algorithm
Algorithm 2—Reverse searching

1. Set the error range e  and the moment s at which the error begins to occur
2. Find the optimal state domain from the moment s to terminal moment
3. For j s= −: :1 1

Find the sub-optimal solution aiming to each state point at current moment, and calculate 
cumulative errors E
If E> e

break;
End

End → Obtain the moment d  (the moment when the loop stops)
4. Find the optimal state domain from the starting moment to moment d
5. Obtain the suboptimal trajectory domain of SOC

TABLE 10.8
The Expansion of the Suboptimal Domain Width Relative to the Optimal 
Domain Width
Cycle CSUDC UDDS NEDC WLTP HWEET

expansion 10.50% 14.94% 11.43% 14.12% 8.5%
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Step 2:  Regarding the reference SOC trajectory as the baseline and the deviation 
width as the radius, a banded-searching region is initially formed.

Step 3:  The available trip information is introduced to limit the maximum 
charging and discharging current, and then the simplified state feasible 
domain is formed, as shown in Figure 10.14.

Compared with traditional DDP, the proposed fast DP improves computational 
efficiency while ensuring global optimality. Because the calculation time of the 
algorithm is related to the hardware configuration of the computing device, it is 
difficult to objectively evaluate the computational efficiency. Since the number 
of state points (SOC) has a great impact on the calculation efficiency of DP algo-
rithm, the number of state points required by DP algorithm is utilized to measure 
the calculation efficiency of the fast DP.

Taking WLTP and UDDS as examples, supposing that speed limits and SOC 
range are available in advance during the whole trip, the simulation results are 
listed in Table 10.9.

FIGURE 10.14 The schematic diagram of simplified state feasible domain.

TABLE 10.9
The Simulation Results of Fast DP ( d_SOC = 0.0001,SOCI 0.6,0.8[ ])
Cycle UDDS WLTP

algorithm traditional fast DP traditional fast DP

number (state points) 5001401 244891 6767208 399952

efficiency improvement 95.10% 94.09%
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Under multiple standard driving cycles, the computing efficiency of fast DP can 
be improved by about 95%. It further illustrates the effectiveness of the proposed 
method (fast DP).

     10.7.2  the oPtiMal solution of aDP unDer 
the uncertain triP inforMation 

In the case of uncertain driving conditions, adaptive dynamic programming (ADP) 
is regarded as an effective method to improve vehicle economy.

10.7.2.1  Determination of Utility Function
The objective of global optimization is to find a set of optimal control sequences 
to minimize the cost function (J ):

 J x U kk
i k

k i( )= ( )
=

−∑
∞

γ  (10.25)

where U k fuel x uk k( )= ( ),  is the utility function, g  is a discount factor, which 
reflects the impact of rewards or penalties at different stages (moments) on the 
overall cost function. The physical constraints on state variables and control vari-
ables are consistent with Eqs. (10.18) and (10.19).

Thence, the basic recursive equation of ADP can be obtained by

 J x U x u J xk k
u

k k k k
k

* *( )= ( )+ ( )



+ +min , g 1 1  (10.26)

 u arg U x u J xk
u

k k k k
k

* *= ( )+ ( )



+ +min , g 1 1  (10.27)

To ensure optimality, the reference SOC trajectory is generated to restrict the 
SOC state. Based on the fast DP, the reference SOC at a certain prediction 
horizon can be roughly determined by the linear decreasing rule. If the refer-
ence SOC is not approximate, it means that there exists more braking energy 
recovery under this scale. Then, the terminal SOC will be re-planned based on 
CDCS strategy. Specifically, when the vehicle is parking, the reference SOC 
will remain constant. When the vehicle can only recover energy, the reference 
SOC is re-planned according to the regenerative braking mode (energy recov-
ery rate is set to 30%).

Within a certain prediction horizon, the speed limits can be acquired or the 
future driving conditions can be predicted. Aiming to different speed distributions, 
the fluctuation degree relative to the reference SOC trajectory is different. Hence, 
the schematic diagram of the state feasible domain is shown in Figure 10.15.

For the speed state, the reachable state points can be determined by introducing 
constraints about maximum acceleration/deceleration, parking, and braking, as 
shown in Figure 10.16.
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FIGURE 10.15 Schematic diagram of SOC feasible domain.

FIGURE 10.16 The schematic diagram of reachable state points (vehicle speed) (a) 
maximum acceleration (b) acceleration (c) deceleration.

FIGURE 10.17 ADHDP model.
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10.7.2.2  Establishment of ADHDP Model
Based on the driving equation, the power demand of the vehicle can be determined. 
The ADHDP structure is adopted, as shown in Figure 10.17, which includes one 
action network and two critic networks.

The critic network is used to approximate the optimal value function. The 
two critic networks show the temporal difference between the moment k  and the 
moment k+( )1 . Only the weight vector of the critic network at the moment k  is 
updated. The cost can be formularized as:
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where W Wc c1 2,  represent the weight vectors between two adjacent layers; b bc c1 2,  
represent the threshold vectors between two adjacent layers.

The steepest gradient descent method is used to update the weights, formula-

rized as Eq. (10.29). Where, e k J J Uc k k k( )= − +( )+ +
ˆ ˆ ˆb 1 1  is the backpropagation of 

critic network, lc is the learning efficiency of critic network.

 

∆ ( )= × ( )× ( )
∆ ( )= × ( )

∆ ( )= ⋅

W k l c k e k

b k l e k

W k l e

c c h
T

c

c c c

c c c

2 2

2

1

1

2

-

-

- kk x W k c k c k

b k l e k

k
T

c
T

h h

c c c

( )⋅ ⋅ ( )⊗ − ( )⊗ ( )



{ }

∆ ( )= ⋅ ( )⋅

2 2 2

1

1

1

2
- WW k c k c kc

T
h h2 2 21( )⊗ − ( )⊗ ( )



{ }











 (10.29)

The action neural network approximates the optimal policy. At each moment, 
engine torque and motor torque satisfy

 T k T k T k i G ireq e m g k( )= ( )+ ( )( )⋅ ( )⋅ 0 (10.30)

where Treq is the required torque, ig  is the transmission ratio, i0 is the final drive ratio.
Thence, the action network only outputs the engine torque, which is formularized as:
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where W Wa a1 2,  represent the weight vectors between two adjacent layers; b ba a1 2,  
represent the threshold vectors between two adjacent layers.

The action network updates weight vectors to minimize the cost Jk . With the gra-
dient descent algorithm, the weight vectors Wa1 and Wa2  are updated as Eq. (10.32).

where la  is the learning efficiency of action network.
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10.7.2.3  The Solution of ADP Under the Information 
Supported by Historical Data

Based on existing historical data, DP results under different speed distributions can be 
obtained. The gear shift schedule and reference SOC trajectory under different speed 
distributions can be extracted by observing DP behaviors. The vehicle speed, acceler-
ation, or power demand are regarded as the basis for rule extraction (map generation).

Within a certain period of time, the vehicle speed conforms to the Markov 
property. Regarding speed and acceleration as state variables, the state transition 
probability matrix of vehicle speed can be defined as:

 T P a a V Vij k m j k m i= = =



+ + −| 1  (10.33)

where, i pp∈{ }1 2, , ,


 is speed space, j qq∈{ }1 2, , ,


 is acceleration space; Vk m+ −1 
is the speed state at the moment k , ak m+  is the acceleration state at the moment 

k+( )1 , m Lp∈{ }1 2, , ,


; Lp is the prediction time.
Regarding the ADHDP model, the vehicle speed for the next 2 seconds 

(v vk k+ +1 2, ) should be predicted, and then the gear at the current and the next 
moment (G Gk k, +1) can be determined by the extracted rules. The control process 
of the ADHDP algorithm is listed in Table 10.10.

10.7.2.4  The Solution of ADP Under the Information with Constraints
Different from the information supported by historical data, there exist multiple 
reachable speed states. By discretizing vehicle speed at a certain interval (d), the 
data set of future driving conditions can be formed, that is,
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TABLE 10.10
Process of ADHDP Model under the Information Supported by Historical 
Data
Algorithm 3: Control process of ADHDP algorithm

Initialization: g, ,T Tc a , ,l lc a , ,n Wc c1, ,W b2 1c c, ,b W2 1a a, ,W b2 1 2a a, ,b x0

For k n=1 1: :
Step 1: Estimating control and cost function

[ ]v S, OC  → running (14), T k( )   
k k e

→ T km ( )
v S, , , ,  → ˆ ˆT k T k G   calculate v S, OC 
 k kOC e m( ) ( ) k   k k+ +1 1 
v S  1 1OC   → running (14), ˆ

k k+ +, T ke ( )+ ˆ1  → T km ( )+1
ˆ ˆ ( ) ( )  → running (11), J ,  J

v SOC k k, ,T ke m,T k  k+
ˆ

k e( )
k k, +1 k 1

U f+1 = +ˆuel T ( )k n1 1, ˆ
e ( )k+

1
E kc c( )= e k2 ( ),e kc k( )= −ˆ ˆJ J( )b k k+ ++Û

2 1 1

∆ ˆE ka a( )= E k( )− −E ka a( )1 ,E k( )= Jk

Step 2: Optimal control

While ( E kc c( )>T ) && (∆E k ) do
a a( )>T

Update W kc c1( ), ,W k2 1 2( ) b kc c( ),b k( )
Update W ka a1( ), ,W k2 1 2( ) b ka a( ),b k( )
Step 1: Estimating control and cost function → E kc a( ),∆E k( )

End
End → Output: W Wc c1, ,2 1 2W W, , *

a a u u=kk

where p is the number of reachable speed state at the current moment, q  is the 
number of reachable speed state at the next moment.

The reference SOC can be generated based on the linear decline rule. Because 
the gear shift schedule cannot be extracted, the optimal gear is determined by 
three ADHDP models. Similar to Algorithm 3, the control process of the ADHDP 
model under the information with constraints is shown in Table 10.11.

10.8 CONCLUSIONS AND PROSPECTS

   10.8.1   conclusions 

Corresponding to the main problems of DP, a global optimization framework 
of “information layer—physical layer—energy layer—dynamic programming” 
(IPE-DP) is proposed, which organically integrates vehicles, information, and 
energy.

The advantages of the proposed framework are mainly as follows:

 1) Standardization
  The framework (IPE-DP) organically integrates the information, physi-

cal, and energy layers, which can standardize the optimizing process of 
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TABLE 10.11
Process of ADHDP Model under the Information with Constraints
Algorithm 4: Control process of ADHDP algorithm

Initialization: g, ,T Tc a , ,l lc a , ,n Wc c1, ,W b2 1c c, ,b W2 1a a, ,W b2 1 2a a, ,b x0

For k n=1 1: :

For i d=1: : vp

For j d=1: : vq

v ik k= =,v j  
+1

→ determine T kreq r( ), 1T keq ( )+
For l=−1 1 1: :

u kl ( )= l  → G Gl = + l
g k k g−1 u k( )

Step 1: Estimating control and cost → E kl
c ( ),∆E kl

a ( )
Step 2: Optimal control

While ( E kl
c ( )>T ) && (s

c ∆E kl
a ( )>T ) do

a

Update W kl l l l
c1( ), ,W kc2 1 2( ) b kc ( ),b kc ( )

Update W kl
a ( ), ,W kl

1 a2 1 2( ) b kl
a ( ),b kl

a ( )
Step 1: Estimating control and cost → E kl

c ( ),∆E kl
a ( )

End → Output: W kl l
c1( ), ,W kc2 1 2( ) W kl , ,W kl l

a U ik ( ), ,j J l
a ( ) ( ) k ( )i j,

End

J i( ), ,l
k kj J=min{ }( )i j  → Output: G ik g( ), ,j u k ( )i j,

End

End

min{ }J ik ( ), j  → Output: x v* *=  SOC G  
k k = , ,* *

 , ,* * * *
k k u Tk e T um g, ( )k    

End

DP strategy and achieve the unifications of different information scenar-
ios, vehicle configurations, and energy conversions. Specifically, for the 
deterministic trip information, the conservation framework of “kinetic/
potential energy and onboard energy” proposed in the physical layer 
realize the one-to-one mapping between driving condition and feasible 
work mode; that is, each condition corresponds to a unique work mode.

 2) Accuracy
  On the one hand, full-factor trip information, including vehicle speed, 

slope, and slip rate, is acquired in the information layer, which provides 
a more comprehensive and accurate driving power demand for energy 
management. On the other hand, the global domain-searching algorithm 
is developed to obtain all optimal solutions.

 3) Guarantee drivability and comfortability
  In the energy layer, the engine frequent start-stop problem, frequent 

shift problem and excessive transient torque response are considered in 
a DP optimization process to ensure the safety, drivability, and comfort. 
The consideration of the gear state and engine state ensures that the DP 
model satisfies the Markov characteristic.
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 4)  Real-time application
  The proposed method can effectively reduce the computational burden 

and improve the real-time performance of global energy management. 
On the one hand, under deterministic trip information, a fast DP is 
developed based on the reference SOC trajectory. This approach con-
tributes to quickly obtaining the optimal control and then extracting 
rules or generating maps for real-time applications. On the other hand, 
the ADP method is utilized to achieve the online application of global 
energy management in the case of uncertain operating conditions.

     10.8.2  ProsPects 

In the future, energy management still has a long way to go. In order to apply 
energy management strategy to a real vehicle, the calculation time of the algo-
rithm should be further reduced; the essence of real-time application is prediction 
and optimization, but factors such as prediction accuracy and design parameters 
will affect the control performance of the strategy. Guaranteeing the accuracy of 
predictions and the resulting optimality of energy management are also issues to 
consider.

The gradual maturity of technologies such as 5G communication, Internet 
of Vehicles (IoV), and Big Data has brought new opportunities for energy man-
agement research. With the continuous development of intelligent transportation 
and vehicle networking technology, vehicles driving on the road every day can 
record a large amount of working condition data through specific devices and 
methods, and information exchange between vehicles is also possible. Research 
is no longer limited to fixed vehicles but can focus on all vehicles in a certain 
area to develop globally optimized regional traffic energy management, imple-
ment vehicle scheduling for all vehicles in the region, and alleviate traffic con-
gestion while reducing regional traffic energy consumption and emissions. In 
addition to considering regional energy consumption, how the car is charged is 
also important. Multi-energy source vehicles are inextricably linked to the grid. 
The increase in the number of multi-energy source vehicles has brought about an 
increase in vehicle electricity consumption and electricity load, which has become 
one of the important boosters for the growth of electricity load in the future. The 
contradiction between the growing demand for electricity load and the backward 
power grid expansion and reconstruction is becoming more and more prominent. 
Considering the flexibility of vehicles, the time and space of charging can be 
adjusted. Therefore, charging energy management based on global vehicle time-
space load characteristics can be developed, and the load curve of the power grid 
can be cut and filled to relieve the charging pressure of the power grid.

When it comes to energy conservation and emission reduction, from a narrow 
vehicle perspective, it is how to reduce energy consumption and emissions during 
vehicle driving, and from a broad energy perspective, it is necessary to start from 
the source of vehicle energy. For example, for logistics enterprises, the proportion 
of energy consumption cost can reach 30% or even higher, and cost reduction and 
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efficiency increase are the long-term concerns of the industry. If the renewable 
energy power supply system can be combined with global energy management 
to plan the operation and charging of multi-energy source logistics vehicles, it 
can simultaneously meet the low-carbon needs of the transportation industry, the 
consumption needs of regional renewable energy, and the demand for logistics 
vehicles to reduce costs and increase efficiency.
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Loop Simulation, 
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Electric Vehicles 

Fuguo Xu

     11.1 INTRODUCTION

The real-time driving emission testing and energy-efficiency improvement strat-
egy design has evolved from finite standard driving cycles to real-world traffic 
road driving. Since standard driving cycles have lower fidelity in reflecting the 
traffic conditions that a vehicle would face with during driving time, it is neces-
sary to consider the real-world driving scenario. Moreover, with the utilization of 
vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communication, there 
is a higher probability of energy-efficiency improvement and emission reduction 
to be further achieved in powertrain control and optimization without making a 
physical and type change of a vehicle [1].

In the sense of traffic scenario anticipation control scheme design process, to 
verify the proposed approach, one way is to test it in a real vehicle running on an 
actual road. Usually, this design process is time-consuming and expensive, increas-
ing design cost [2, 3]. Even worse, since the test version of the control scheme 
would be inadequate for safety protection for real-world traffic conditions, it may 
put test drivers in danger situations when testing on an actual traffic road. An alter-
native way to deal with these problems is to utilize a real-world traffic emulated 
simulation platform with powertrain equipment or physical-based mathematical 
model that could capture dynamics accurately, especially during the preliminary 
stage of control scheme design. By using this kind of traffic-emulated powertrain 
simulation platform, design cost and timing would decrease substantially.

Researchers have paid attention to this combination of traffic scenario and pow-
ertrain, and various attempts have been made towards using traffic scenarios to 
decrease fuel economy in powertrain optimal control. The most common exam-
ple is connecting the traffic simulator and powertrain simulator in a sequential 
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unidirectional structure, where traffic information is only utilized as inputs for 
powertrain control scheme design. However, the dynamic of ego vehicle in pow-
ertrain control would influence traffic participants dynamics, and as a result, the 
total traffic condition would also change. In a unidirectional traffic platform, 
this influence could not be simulated, which would make the fuel economy per-
formance under this design control scheme less reliable. To reflect ego vehicle 
dynamic influence on the traffic scenario, there are bidirectional co-simulation 
platforms that are set as a closed-loop by using macroscopic traffic simulation, 
such as simulation of urban mobility (SUMO) and powertrain model [4, 5]. In 
terms of information interchange, V2V and V2I information is available to the 
powertrain control. However, that co-simulation framework is actually a velocity 
tracking sense in the powertrain model to that generated in the traffic platform. 
Obviously, only tracking vehicle speed information will not capture driver behav-
ior adequately.

     11.2 SIMULATION PLATFORM

The framework of vehicles in the connected environment is sketched in Figure 11.1 
where the connected vehicles are enabled to communicate with GPS, V2V, and 
V2I during the trip. For example, the V2I information, such as traffic light phase 
and timing and the distance to the next intersection can be obtained for the ego 
vehicle. The distance headway between the ego vehicle and the preceding vehi-
cle should be considered for driving safety, and it is available to the ego vehicle 
equipped with a distance detecting sensor. The preceding vehicle information, 
such as distance, speed, and acceleration, is transmitted to the ego vehicle through 
the V2V. In the road, the maximum speed limit based on traffic rule is also avail-
able to the ego vehicle.

A traffic-in-the-loop powertrain simulation system mainly includes a real-world 
emulated traffic simulation platform and a mathematical physical-based power-
train model. The powertrain model would capture the dynamic progress of com-
ponents accurately and the energy consumption of each energy supply resource, 

FIGURE 11.1 Electric vehicle running in the connected environment.
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such as the fuel consumption of the engine and the electricity consumption of the 
battery. As depicted in Figure 11.2, the proposed simulation platform consists of 
IPG CarMaker and MATLAB/Simulink, where the traffic simulation is conducted 
in CarMaker, and the powertrain simulation is conducted in MATLAB/Simulink, 
respectively.

     11.2.1 traffic siMulator 

A real-world emulated traffic scenario is formulated in IPG CarMaker and its 
graphical user interface (GUI) is shown in Figure 11.3. In this platform, V2V and 
V2I communication functions could be simulated. The traffic scenario is edited in 
advance with road condition, traffic light information, traffic density, and traffic 
flow generation. Real-world emulated 3D video is displayed in the GUI. Moreover, 
there are available interfaces with other software, such as MATLAB/Simulink, 
by which additional powertrain modeling and control scheme verification can be 
achieved.

In the following part of this section, the sensor of the ego vehicle and communi-
cation of V2V and V2I will be shown. For the ego vehicle equipped with a sensor, 
it is possible to detect the inter distance between the ego vehicle and the preceding 
vehicle. The real-time signals of detection flag and distance headway are provided 
in the simulator. The detection flag signals 1 and 0 denote detectable and unde-
tectable, respectively. If the flag signal is 1, the real-time distance headway is 
available; otherwise, the value of distance headway is given as 0. The profiles of 
the ego sensor’s information in three traffic scenarios are shown in Figure 11.4.
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FIGURE 11.2 Framework of the traffic-in-the-loop powertrain simulation platform.
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For a vehicle running in the real-world traffic scenario, the other traffic partic-
ipants in the same scenario should also be considered, consisting of traffic lights 
and vehicles ahead of the ego vehicle. The real-time position, speed, and accelera-
tion of the preceding vehicle are available to the ego vehicle through V2V commu-
nication. The profiles of speed and acceleration of the preceding vehicle in three 
cases are shown in Figure 11.5.

The ego vehicle should follow the rule of the traffic light. It is noted that only 
green and red signals are considered in the phase of a traffic light. Thus, it follows 
the rule that vehicle runs and stops when facing with the green and red signals at 

Depature

FIGURE 11.3 GUI of traffic simulator.
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the intersection, respectively. There is a traffic light at each intersection, and the 
distance to the intersection (traffic light) is available to the ego vehicle. The phases 
and remaining timings of upcoming traffic lights in three cases are shown in 
Figure 11.6. In Figure 11.6, the phase denotes the traffic light information, where 
1 and 3 denote the green light and the red light, respectively.

16
Distance [km]

14121086420

16
Distance [km]

14121086420

Preceding vehicle

0

20

40

60

Sp
ee

d 
[k

m
/h

]

-40

-20

0

20

A
cc

el
er

at
io

n 
[m

/s2 ]

case1
case2
case3

FIGURE 11.5 Speed and acceleration of preceding vehicle of three traffic cases.

0

1

2

3

Ph
as

e [
-]

Next 1st traffic light

case1 case2 case3

0

20

40

60

Ti
m

e r
em

ai
n 

[s
]

16
Distance [km]

14121086420

16
Distance [km]

14121086420

FIGURE 11.6 The traffic lights remain timing and phase of 1st upcoming for three traffic 
cases.



241Traffic-in-the-Loop Simulation, Optimization, and Evaluation

     11.2.2 PoWertrain MoDel 

The dynamic of the HEV powertrain in Figure 11.7 can be seen as a four-order 
differential equation with following form:
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where F1 and F2 are forces working on ring gear and sun gear. Tc is ring gear torque. 
Ji ,Ti,wi  denote rotational inertia, torque and speed, respectively. i e m g l=[ ], , ,  is 
equivalent mass with consideration of rotational inertials of powertrain compo-
nents, including engine, motor and generator, and ring gear. And ME  represent 
equivalent transmission ratios from motor and planetary gear system to tire. a and 
b  are teeth number of ring gear and sun gear. FB denotes braking force and hB  is 
corresponding efficiency. v  is vehicle speed and F v( ) is resistance force, including 
rolling force and air resistance, which is written as following:

 F v mg C Avd( ) cos .= +µ θ ρ0 5 2  (11.2)

where m C Ad, , , , , ,µ θ ρ  represent vehicle mass, rolling coefficient, slope, gravita-
tional acceleration, air density, drag coefficient, and frontal area, respectively.

For the planetary gear system, speeds of we , wg, and wl  should satisfy the fol-
lowing speed constraint:

 R R R Rr l s g r s ew w w+ = +( )  (11.3)

FIGURE 11.7 Physical structure of power-split HEV powertrain.
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Forces of F1 and F2 are equal. Moreover, with the knowledge of Eq. (11.3), power-
train dynamics shown in Eq. (11.1) could be rewritten as:
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Further, it is assumed that the axis is rigid, speeds of wl  is equal to wm , which has 
the relationship with v :

 wl
r tire

Rw

R r R
v=

+( )
 (11.5)

Then, wl  and wg are replaced by we  and v, only dynamics of we  and v are given and 
could be summarized as following matrix form:
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where D11, D12 , D21 and D22 are the fixed parameters for transforming Eq. (11.4) 
into Eq. (11.6).

With determination of engine speed and vehicle speed, speeds of motor and 
generator would be calculated as following:
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where r , Rw, Rtire denote teeth numbers before and after differential and tire radius, 
respectively.

In a traffic scenario simulator, usually there is no powertrain structure for a 
virtual vehicle. For analyzing traffic information consideration-based energy man-
agement strategy design and powertrain dynamic control in optimal sense, a com-
bination of a powertrain model and traffic scenario simulator would be conducted. 
Dynamics of a vehicle in longitudinal scenes could be seen as a 1D differential 
equation; however, it is a 2D dynamic function with engine speed and vehicle 
speed as states in the HEV powertrain model. The torque matching problem 
should be solved for the co-simulation platform. This chapter mainly investigates 
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an integration approach for mechanical 2D dynamics of the powertrain with 
the limited 1D vehicle dynamics in the CarMaker traffic simulator. The signal 
exchange between the traffic simulator and HEV powertrain simulator is depicted 
in Figure 11.8.

     11.3 OPTIMIZATION

     11.3.1 oPtiMal PoWertrain control 

For the optimal powertrain control of electric vehicles, the main target is to achieve 
efficiency improvement to reduce energy consumption. Thus, the cost function L 
in the optimal control problem represents energy consumption. The goal of the 
optimal control problem is to minimize this energy consumption by deriving 
an optimal control solution u* for the cost functional with dynamics model con-
straints and inequality constraints, described as follows:

 u L x u dt
u t
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where t0  and t f  denote the initial time and the terminal time of the predictive hori-
zon; x, u , and w  denote the state variables, control inputs, and outside disturbance, 
respectively. There are inequality constraints h  that the optimal solutions have to 

IPG CarMaker

DM.Gas

2D Planetary 
Gears Powertrain

MATLAB/Simulink

Traffic Scenario

PT.GearBox.Trq
_Ext2GB_Out

Gas
Braking
Steel

V2V
V2I

PT.WRL.Trq_B2w
PT.WFL.Trq_B2w

Vehicle dynamic

Driver

Car.v
DM.Brake

Energy Manage
-ment strategy

Te Tm Tg

Tdem

CarLoad.0.mass

CarLoad.1.mass

cmdcmd cmd

Car.v

FIGURE 11.8 Signal exchange between CarMaker and MATLAB.



244 Big Data and Electric Mobility

satisfy. Moreover, there are the physical limitations of the control input u , defining 
as umin and umax. The initial state x t( )0  is determined as x0. Also, the outside dis-
turbance in the current time t0 is available; however, this disturbance w  in future 
time of predictive horizon is unknown. How to deal with this problem to further 
improve the performance will be discussed in the following subsection.

     11.3.2 traffic inforMation–BaseD PreDiction 

With the rich historical and real-time traffic participants data, it is possible to 
employ the advanced data-based learning approach to predict the disturbance w  
that is mentioned in the previous optimal powertrain problem. In this part, an 
example of prediction using traffic information is introduced. Specially, the con-
trolled vehicle is equipped with an automated driving technology, and the preced-
ing vehicle speed is seen as the disturbance when the headway distance between 
the preceding vehicle and the ego vehicle are considered. Since there are multiple 
disturbance signals to be predicted within the optimization horizon between t0  and 
t f , the chain predictor is introduced, shown in Figure 11.9. The detail information 
and output information of the predictor are listed in Table 11.1. For the prediction, 
Gaussian process (GP) is employed.

     11.4 EVALUATION

In this section, the prediction results and optimization results are given, respectively.

     11.4.1 PreDiction results 

To show the performance of prediction, Figure 11.10 depicts the preceding vehicle 
speed vp  prediction results in four cases: (a) maximum speed, (b) decreasing speed, 
(c) minimum speed, and (d) increasing speed. It can be seen that for the maximum 
and minimum speeds, the prediction accuracy is high. Even though an error of 
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FIGURE 11.9 Structure of the chain predictor.
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approximately 4 km/h is observed when vehicle speed decreases to approximately 
zero, the proposed control scheme would also plan a zero ego vehicle speed. For 
the increasing and decreasing speed scenarios, the prediction accuracies are not as 
promising as in the case of stable vehicle speeds. For a receding horizon optimal 

TABLE 11.1 
Meaning of Input and Output Signals for Multi-Step-Ahead Dq Predictor
Signal Variable Description

ρ(k) Traffic density at kth step

Input dnext (k) Distance to next junction at kth step 
dpast (k) Distance to past junction at kth step
TLph(k) Traffic light phase at kth step 
TLtime(k) Traffic light timing at kth step
∆q(k) Vehicle increment number at kth step

Output ∆q(k + 1) Vehicle increment number at k+1th step 
∆q(k + 2) Vehicle increment number at k+2th step 
∆q(k + 3) Vehicle increment number at k+3th step 
∆q(k + 4) Vehicle increment number at k+4th step 
∆q(k + 5) Vehicle increment number at k+5th step
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control scheme, only the first control input is applied. The prediction of the pre-
ceding vehicle motion trend is therefore sufficient for real-time optimization.

     11.4.2 oPtiMization results 

Figure 11.11 depicts the simulation result comparison for different initial con-
ditions, which are s m0 10= [ ], s m0 28= [ ] and s m0 35= [ ]. The black solid lines 
denote the rules of maximum and minimum s hv-  that the car-following sce-
nario must abide by. W/I GP-Predictor and W/O GP-Predictor represent the 
performances of the proposed control scheme with the chain GP-based predictor 
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and the proposed control scheme without the chain GP-based predictor. In the 
W/O GP-Predictor case, the future preceding speeds v k jp ( )+ , j  = 1, . . ., 5 are 
observed to be equal to the current v kp ( ) obtained through V2V. It is observed 
that there is no constraint violation scenario with the chain GP-based control 
scheme under different initial conditions. However, without the predictor, the 
constraint violation scenario occurs. This is caused when the preceding vehicle 
speed starts to increase. Since when the preceding vehicle starts to accelerate, 
the further preceding speed without the GP-based predictor is seen to be the 
same as the current speed, which is approximately zero, and the distance head-
way increases.

Finally, Table 11.2 shows the fuel economy of the proposed optimal control 
scheme for five different traffic scenarios. In Table 11.2, W/I GP and W/O GP 
denote the proposed receding horizon-based optimal control schemes with the 
GP-based predictor and without the predictor, respectively. Moreover, a dynamic 
programming (DP) based optimal control scheme is also developed for perfor-
mance comparison, where DP and DP W/I Dis. denote the DP algorithm with all 
disturbance input available in advance and only part of it available, respectively. 
In Case 3 and Case 4, the traffic densities are set higher. Therefore, the receding 
horizon-based control scheme without the GP-based predictor exhibits less abil-
ity for fuel economy improvement than in the other cases. Moreover, the traffic 
density is low in Case 5. The difference in fuel economy performance improve-
ment between the proposed control scheme with the predictor and without the 
predictor is small in Case 5. With less traffic density, there are fewer vehicles in 
the traffic scenario, so the traffic look-ahead horizon is more stable, which would 
exert less influence on the fuel economy of the ego vehicle. It is observed that the 
proposed control scheme with the predictor can achieve higher fuel economy, 
but it is still less than that of the DP-based control scheme with all information 
pre-known. However, it is better than that of DP with less pre-known disturbance 
input information.

TABLE 11.2 
Performance Comparisons under Different Control Schemes for Different 
Cases

Expense [¥/km]

Scenario W/I GP W/O GP DP DP W/I Dis.

Case 1 16.94 18.03 15.16 22.45

Case 2 17.29 20.08 15.52 21.01

Case 3 16.97 20.49 15.57 22.54

Case 4 16.83 20.74 15.43 24.77

Case 5 15.13 15.74 13.17 22.43
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     11.5 CONCLUSION AND OUTLOOK

In this chapter, the simulation, optimization, and evaluation for an electric vehicle 
in a simulation platform that combines traffic simulator and a powertrain simulator 
are introduced. In the traffic simulator, the communication between vehicle, infra-
structure, and ego vehicle can be simulated. However, the high-fidelity powertrain 
model is built to emulate the powertrain dynamic. Prediction and optimization 
results of a typical example in optimal powertrain control to minimize the energy 
consumption are given to show the potential application prospects of this platform.

In the proposed simulation platform, currently only simulated traffic scenario 
and simulated powertrain are integrated. In the future work, how to integrate the 
real powertrain test bench, such as an engine, into this platform still needs more 
exploration. Moreover, real-world traffic information through fast communication 
will be available to this platform, and the digital twin technology may be the pos-
sible approach to deal with this problem. However, the rapid prototyping platform 
should be considered for running the virtual model when real-world data is intro-
duced to this platform for real-time application.
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     12.1 CHALLENGES FOR ROAD TRANSPORT

Road transport, connecting and providing access to people, goods, and services in 
societies, is fundamental to economic and social activities worldwide [1]. In the 
coming decades, passenger and freight mobility demand is expected to rise signifi-
cantly because of continuing population growth and urbanization [2].

As shown in Figure 12.1 (a), the International Transport Forum (ITF)has pro-
jected global passenger transport demand to increase over twofold between 2020 
and 2050, from 55 trillion to 121 trillion passenger kilometers (pkm). Private vehi-
cles are the preferred mode of travel, which will account for 50–52% over the next 
30 years. Public transport ridership will increase at an annual rate of 3.2% through 
2020 and 2050, covering 35% road trips by 2050. Two- and three-wheelers were 
only responsible for 5% of worldwide road passenger transport in 2000, but that 
proportion is likely to reach 13% in 2050. According to the data in Figure 12.1 (b), 
the current global freight transport demand of 15 trillion tonne kilometres (tkm) is 
expected to increase by 4 trillion tkm (29%) by 2030 and 17 trillion tkm (117%) by 
2050, with heavy-duty vehicles maintaining a dominant share (over 75%) of road 
freight movements.

The rising demand for road transport poses unprecedented environmental, eco-
nomic, and social challenges, particularly with the increasing urgency to save 
energy, reduce carbon emissions and air pollutants, avoid crashes, and relieve 
congestion [3]. For example, as reported by the International Energy Agency 
(IEA), over 53% of global primary oil consumption in 2010 was used to meet 
94% of the total transport energy demand [4]. The Intergovernmental Panel on 
Climate Change (IPCC) reported that, in 2014, the global transportation sector 
was responsible for almost one-quarter of greenhouse gas (GHG) emissions, with 
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FIGURE 12.1 Global road transport activity evolution (2000–2050) for (a) passenger 
(in trillion passenger kilometres, trillion pkm) and (b) freight (in trillion tonne kilometres, 
trillion tkm).

Sources: Adapted from International Council on Clean Transportation (ICCT) 
“Global transportation roadmap” [10], International Transport Forum (ITF) “ITF 
transport outlook 2019” [11] and Khalili et al. [12].

Note: Figures may not sum, because of rounding.

about 72% thereof from road transport [5, 6]. In the 2018 Global Status Report 
on Road Safety [7], the World Health Organization (WHO) highlighted that 
the number of annual road traffic fatalities continued to increase steadily since 
2000, reaching 1.35 million in 2016. In addition, according to INRIX Roadway 
Analytics in 2017, over the next 10 years, across all 25 most-congested cities of 
the United States (US), for example, Los Angeles, New York, and San Francisco, 
traffic jams are estimated to cost the drivers $480 billion due to lost time, wasted 
fuel, and emitted carbon [8, 9].

12.2 AUTOMATED, CONNECTED, AND 
ELECTRIFIED VEHICLES (ACEVS)

Overcoming these problems, such as carbon emissions, air pollution, nonrenew-
able energy consumption, deaths, injuries, wasted time, and congestion, requires 
rethinking the entire road transport system. Therefore, we must bring together 
technologies, systems design methods, and business models to supply sustainable 
mobility solutions at a low cost to consumers and to societies [1]. Although much 
uncertainty remains about how, exactly, future sustainable mobility will unfold, 
many of the pivotal building blocks and their potential are becoming clear. As the 
key to these developments, three trends, namely, automated, connected, and elec-
trified vehicles (usually represented by the acronym ACEVs), are radically altering 
the way people and goods move [13]. Summaries of recent advances in these three 
directions are provided as follows.
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     12.2.1 autoMateD vehicles 

Commercially available automated vehicles are mainly supported by advanced 
driver assistance systems (ADAS), which are intended to help drivers in their driv-
ing activities [14]. The market for ADAS is expected to show strong momentum in 
the coming decades, fuelled largely by regulatory and consumer interest in safety 
solutions that protect drivers and prevent accidents [15]. For example, in 2019, 
some 40 countries, led by the European Union (EU) and Japan, have agreed on 
a draft United Nations (UN) Regulation making autonomous emergency braking 
(AEB) systems mandatory for all new vehicles [16]. In addition, current ADAS 
technologies will ultimately pave the way for fully autonomous vehicles, which are 
now a major focus of research and development (R&D), public interest, and press 
coverage [17]. As summarized in Figure 12.2, ADAS features can be categorized 
into three broad groups: aiding the driver, warning the driver, and assisting the 
driver in performing certain basic driving functions [18].

12.2.1.1 ADAS Aiding Features
These features, enabled by sensors such as mono-vision cameras, infrared lights, 
and lasers, provide additional display or illumination, improving improve the 

FIGURE 12.2 Categories of ADAS features.

Source: Adapted from Boston Consulting Group (BCG) “A roadmap to safer driving 
through advanced driver assistance systems” [18].
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driver’s visibility. For instance, night vision (NV) systems utilize the infrared cam-
era to capture the front view in adverse circumstances, such as darkness and poor 
weather [19]. The rear view camera can alleviate the rear blind spot to facilitate 
parking and reversing [20]. The adaptive front lighting system (AFS) optimizes the 
distribution of light from the headlights according to vehicle speed and steering 
input [21]. The surround view system (SVS) gives drivers a 360-degree surround 
view to ensure easy, safe, and comfortable parking and maneuvering [22].

Aiding features, most of which were introduced before 2008, are not newcom-
ers in the automotive field. Their cost to customers is decreasing at an annual rate 
of 4% to 9% [18].

12.2.1.2 ADAS Warning Features
Warning features can alert the driver to potential dangers through sensory cues 
such as audio, visual, and haptic signals. For example, the park assist system 
uses proximity sensors to measure the distances to nearby objects while parking 
and alerts the driver of obstacles via a beeping noise [23]. The forward collision 
warning (FCW) system monitors traffic conditions ahead and provides alerts to 
the driver when possible forward collisions are detected [24]. The lane departure 
warning (LDW) system visually tracks lane markers and alerts the driver if the 
vehicle unintentionally drifts out of the travelling lane [25].

Other warning features include blind spot detection (BSD), rear cross traffic 
alert (RCTA), and driver monitoring systems (DMS), all of which have been com-
mercially available since 2006.

12.2.1.3 ADAS Assisting Features
Assisting features can actively engage in driving tasks to ensure safety and com-
fort, such as longitudinal control (e.g., acceleration, braking, and gear shifting) and 
lateral control (e.g., steering) of the vehicle movement [26]. Such features are usu-
ally enabled by advanced digital technologies and intelligent tools, for example, 
mono- and stereo-vision cameras, short- and long-range radars, and light detecting 
and ranging (lidar), using reflected light signals to assess the driving environment 
[18]. ADAS products with assisting features have hit the automotive market in the 
last decade, some of which are elaborated as follows.

 1) Adaptive cruise control (ACC): Vehicles equipped with ACC systems 
are now reaching mainstream production [27]. These systems utilize 
radar and control the throttle and brake pedals of the vehicle, aiming to 
automatically maintain a safe inter-vehicle spacing in congested traffic 
or a constant speed (user-specified) in free-flow traffic, which poten-
tially improve safety, fuel economy, and road capacity [28].

 2) Intelligent speed adaptation (ISA): It uses the onboard global positioning 
system (GPS) and a digital map to improve the driver’s compliance with 
speed limits [29]. If the vehicle speed exceeds a safe or legally enforced 
speed, the ISA system can provide early warnings of safety issues or 
directly control the brake and throttle pedals to prevent speeding [30].
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 3) Lane keeping assist (LKA): It is an extended version of the lane depar-
ture warning (LDW) system. Instead of alerting the driver to the unin-
tended lane departure, LKA can intervene in the actual driving task by 
providing steering torque and therefore helping the vehicle return to the 
center of the lane [31].

 4) Automatic parking: It uses ultrasonic sensors and/or cameras to scan 
for a suitable parking space and then moves the vehicle from a traffic 
lane into the parking spot [31]. The automatic parking system aims to 
enhance the comfort and safety of driving in constrained environments 
where much attention and experience is required [32].

 5) Autonomous emergency braking (AEB): It is enabled by sensors (e.g., 
cameras, radars, and/or lidars) to detect the presence of possible hazards 
in front of the vehicle [33]. In an emergency, the system can automatically 
enhance braking effort to prevent an accident or mitigate its severity [34].

     12.2.2 connecteD vehicles 

Connected vehicles are another key enabler for future mobility. As digital disrup-
tion is transforming the automotive and transport sectors, more and more relevant 
applications and services in various domains will follow, such as infotainment, 
telematics, driver assistance, and autonomous driving [3]. Vehicles should, there-
fore, be capable of exchanging information not only with other vehicles, but also 
with entities, like pedestrians, roadside equipment, and the internet. These inno-
vative connectivity features are collectively called vehicle-to-everything (V2X), 
which will lend support to a more active role of the vehicle in safety and mobility 
applications, for example, avoiding collisions, monitoring intersections, gathering 
real-time traffic information, and exchanging incident alerts. The resulting market 
is expected to increase across the globe and reach around $100 billion in 2025 at a 
compound annual growth rate (CAGR) of 18% between 2018 and 2025 [35].

According to the type of peer that the vehicle communicates with, V2X com-
munication is a term including many different acronyms, such as

 1) Vehicle-to-infrastructure (V2I): Communicating with roadside units 
(RSUs), such s traffic lights, speed limits, and traffic cameras.

 2) Vehicle-to-vehicle (V2V): Communicating between vehicles, without 
having to access the telecom network.

 3) Vehicle-to-pedestrian (V2P): Scanning for and communicating with 
pedestrians or cyclists within close proximity.

 4) Vehicle-to-device (V2D): Communicating with electronic devices such 
as smartphones, smartwatches, and smart keys.

 5) Vehicle-to-grid (V2G): Allowing electrified vehicles (EVs) to commu-
nicate with the power grid and to store and discharge electricity, which 
enables innovative demand management on power-limited grids.

 6) Vehicle-to-network (V2N): Operating in the licensed cellular spec-
trum (e.g., 5G), which is good for infotainment.
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V2X applications often need extreme connectivity performances, for example, 
ultra-low latency ( <1ms ) for real-time applications, highly secure and reliable 
connectivity for safety-critical tasks, and high-speed broadband ( >1 Gb/s >) to sup-
port augmented reality (AR) [35]. Different V2X communication standards avail-
able on the market can be categorized into two types depending on the underlying 
technology: WLAN-based (IEEE 802.11p) and cellular-based ( C-V2X ) [36].

     12.2.3 electrifieD vehicles 

The International Energy Agency (IEA) reported in 2020 that 17 countries have 
announced 100% zero-emission vehicle targets or the phase-out of internal com-
bustion engine vehicles (ICEVs) by 2050 [37]. These decisions are linked to the 
Paris Climate Agreement signed by more than 190 nations in 2016 [38]. Electrified 
vehicles, therefore, feature prominently in current and planned policy frameworks 
to achieve greenhouse gas (GHG) emissions reduction targets [39].

To address the global push towards more environmentally friendly and ener-
gy-efficient transport, electrified propulsion systems are evolving with the auto-
motive industry. Table  12.1 overviews five types of commercially available 
powertrain technologies, which are categorized by their energy sources, and pro-
vides an evaluation of how they stack up against key environmental, performance, 
and economic dimensions [40].

Internal combustion engine vehicles (ICEVs) are almost exclusively powered 
by gasoline or diesel and well-established in global road transport because of their 
low cost, high power density, proven durability, fuel use flexibility, and a wide-
spread network of refuelling stations [41]. Over the past decades, advanced engine 
technologies, such as downsizing, turbocharging, and exhaust after-treatment, 
have contributed to reducing tailpipe emissions and energy losses; however, it is 
widely recognized that little room is left for significant improvements [40].

Hybrid electric vehicles (HEVs) are developed to optimize the use of the internal 
combustion engine (ICE) through its interplay with electric components such as the 
low-voltage (LV) battery and the electric motor (EM) [42]. As a result, the ICE can be 
better managed to avoid low-efficiency and high-emission operations, such as idling, 
cold start, and strong acceleration [43]. Moreover, the EM can serve as a generator 
in regenerative braking to convert the otherwise wasted kinetic energy into electric 
energy, which is then used to charge the battery and extend the driving range [44].

Plug-in hybrid electric vehicles (PHEVs) have a similar powertrain architecture 
to HEVs, however, are usually fitted with a more powerful EM and a much larger 
battery [45]. The battery can be recharged by plugging it into an external power 
source (utility grid or renewable energy sources such as solar cells), by the onboard 
ICE-powered generator, or through regenerative braking [46]. Despite the ICE 
being used occasionally to assist the propulsion, PHEVs can provide a significant 
share of the all-electric range (AER), the value of which typically lies between 
30 and 60 km today and possibly between 60 and 80 km in the near future [40].

Battery electric vehicles (BEVs), operating only on stored electricity, consist 
mainly of the high-voltage (HV) battery and the EM. Compared with the ICE, 
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which produces peak torque within a limited range of speed, the EM is able to 
deliver high starting torque across a broad range of speed [47]. Therefore, many 
parts, such as the reduction gearbox, the increasingly complex engine manage-
ment system, and a wide variety of fluids (e.g., engine oil and transmission fluid), 
are not required for BEVs, meaning lower maintenance costs [48]. Furthermore, 
as battery prices continue to drop, BEVs are expected to offer lower total cost of 
ownership (TCO) to customers than ICE and hybrid vehicles [40].

Fuel cell electric vehicles (FCEVs) use fuel cell (FC) stacks to convert the 
chemical energy of onboard gaseous hydrogen (H2) into electricity, which is then 

TABLE 12.1
Pros and Cons of Electrified Vehicles Categorized by Energy Sources

Electrified vehicles

ICEV HEV PHEV BEV FCEV

Environment T2W emissions a D C B A A
W2W emissions b D D B B B
Recycling B B A D C

Performance Range Refueling time c A A A C B
Acceleration A A C D B
Top speed B B A A A

A A B C C

Economics TCO today d A A B C D
Price today A B C D D
Infrastructure costs A A B D C

Key characteristics, ICE power, kW 50–400 50–400 50–400 — —
indicative Electric power, kW — <25 <100 >100 >100

Battery capacity, kWh — <2 <30 >40 <10
T2W CO2 savings, %
CO2 — 10–20 50–80e 100 100

a Tank-to-wheel (T2W) emissions, i.e., tailpipe emissions that a vehicle produces locally via the 
combustion of fossil fuels; these emissions are subject to current regulations globally.

b Well-to-wheel (W2W) emissions, i.e., emissions related to the fuel cycle or generation of electricity, 
the production of the vehicle and battery, and the use of the vehicle; largely dependent on a coun-
try’s energy mix.

c Considering only the time needed to refuel/charge the vehicle, not infrastructure availability.
d Total cost of ownership (TCO), strongly depending on region and vehicle segment.
e Estimated CO2 savings considered for certification tests.
Source: Adapted from McKinsey Center for Future Mobility—“Reboost: A comprehensive view on 

the changing powertrain component market and how suppliers can succeed” [40].
Note: A = excellent; B = good; C = moderate; D = challenged; ICE(V) = internal combustion engine 

(vehicle); HEV = hybrid electric vehicle; PHEV = plug-in hybrid electric vehicle; BEV = battery 
electric vehicles; FCEV = fuel cell electric vehicles.
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stored in a battery to drive the vehicle’s EM. The compressed hydrogen demon-
strates significantly higher gravimetric and volumetric energy densities than bat-
teries [49]. The refuelling time of a few minutes makes FCEVs well-suited for 
applications with high-power and long-distance requirements, such as trucks and 
commercial vehicles [40]. In addition, from the perspective of life cycle emissions 
and environmental impacts, FCEVs are more sustainable than BEVs, ICEVs, and 
hybrids, with even more room for improvement as technologies of hydrogen pro-
duction and delivery mature [50].

     12.3  ECO-COOPERATIVE AUTOMATED 
DRIVING SYSTEMS (ADS)

As one of the most important ADAS features (shown in Figure 12.2), adaptive 
cruise control (ACC) systems have reached the consumer market for over two 
decades [51, 52]. As presented in Figure 12.3 (a) and (b), these systems are enabled 
by radar sensors and used to automatically maintain a desired inter-vehicle spac-
ing in congested traffic or a constant speed in free-flow traffic, which potentially 
improves the safety, capacity, and fuel economy of road transport [53, 54].

Figure 12.3 (c) illustrates the longitudinal kinematics for ACC implementation, 
which is important for the control problem formulation and can be described by
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 (12.1)

where subscripts n  and n-1 represent the ego and the preceding vehicles, respec-
tively; x , u , and a  are the vehicle’s longitudinal position (m), speed (m/s), and 
acceleration (m/s2), respectively; t  denotes time (s); l  means the vehicle length 
(m); sn  is the spacing (m) between the front bumper of the ego vehicle and the 
back bumper of the preceding one; sn des,  is the desired spacing determined by the 
spacing policy inherent in the ACC system; Dxn  is the headway (m); Dsn  rep-
resents the spacing error (m) between the actual and desired values; Dun  is the 
relative speed (m/s) between the preceding and ego vehicles.

In the remainder of the section, we revisit the literature on spacing policies and 
control algorithms of ACC systems, followed by a review of studies on cooperative 
ACC (CACC) and ecological ACC (EcoACC), both of which are more sophisti-
cated variants of ACC.
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FIGURE 12.3 Overview of an adaptive cruise control (ACC) system. (a) Control 
architecture of an ACC system (b) Operation modes of an ACC system (c) Longitudinal 
kinematics for ACC implementation.

Source: Adapted from Bu et al. [55], Li et al. [56], Wang [57], Bernsteiner [58]
Note: V2X = vehicle-to-everything; ACC = adaptive cruise control; CACC = coopera-
tive adaptive cruise control; ICE = internal combustion engine; EM = electric motor
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     12.3.1 sPacing Policies of aDs

The spacing policy determines the desired spacing ( sn des, ) in Eq. (12.1) and plays 
a crucial role in driving safety, traffic throughput, and string stability [59]. String 
stability means disturbances (e.g., spacing error Dsn  and relative speed Dun ) of 
an individual vehicle in a platoon (or vehicle string) do not amplify when they 
propagate upstream [60].

In previous studies, prevailing spacing policies can be grouped into three types 
including constant distance (CD), constant time headway (CTH), and nonlinear 
distance (NLD), as detailed next [56].

12.3.1.1 Constant Distance (CD)
In the CD policy, the desired inter-vehicle spacing ( sn des, ) is independent of the 
driving environment [61, 62],

 s t sn des, ,( )= 0  (12.2)

where s0  is a positive constant (m). Although potentially increasing traffic capac-
ity [63], this policy cannot guarantee string stability unless the leading vehicle 
broadcasts its information (e.g., speed and acceleration) via V2V communication 
to all other vehicles in the platoon [64].

12.3.1.2 Constant Time Headway (CTH)
In the CTH policy, which is widely used in commercial ACC systems, the desired 
spacing ( sn des, ) varies as a linear function of the ego vehicle speed ( un ) [65],

 s t s t tn des h n, ,( )= + ( )0 u  (12.3)

where th  is the time headway ( s ) and s0  is the minimum (or standstill) spacing. 
This policy is to some extent similar to that of human driver’s behavior [56] and 
has been used to develop ACC controllers that can guarantee string stability [66]. 
The major drawback of the CTH policy, however, is poor robustness against traffic 
flow fluctuation [67, 68].

12.3.1.3 Nonlinear Distance (NLD)
In the NLD policy, the desired spacing ( sn des, ) is a nonlinear function of one or 
multiple state variables (e.g., un , un-1 , xn , and xn-1 ) associating with the driving 
environment, the generic mathematical formulation of which can be represented as

 s t g t t x t x tn des n n nn, , , , ,... ,( )= ( ) ( ) ( ) ( )( )− −u u 1 1  (12.4)

NLD spacing policies are expected to outperform CD and CTH policies in enhanc-
ing both traffic flow stability and traffic capacity [69]. For instance, an NLD policy 
is developed based on Greenshield’s speed-density relationship and demonstrates 
superior stability and safety properties [67], as given by
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where rmax  and u free  denote the jam density and free-flow speed of the traffic, 
respectively [59]. Another NLD spacing policy, which includes a quadratic term of 
ego vehicle speed ( un ), is proposed and optimized to improve both string stability 
and traffic flow stability [68], as described by

 s t t tn des n n, ( ) ( ) ( ). . .= + +3 0 0019 0 0448 2u u  (12.6)

More complicated NLD policies have been discussed in the literature. For exam-
ple, a safe distance policy is reported to take into account the vehicles’ braking 
capability [70, 71], which can be mathematically expressed as

 s t s t
t t

n des n
n n

, ( ) ( )
( ) ( )

= + − −
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αmin min
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where s0  is the minimum (or standstill) spacing (m); t  is the time constant (s); 
both amin  and âmin  are negative constants (m/s2), representing the braking capa-
bilities of the ego ( n ) and preceding ( n-1) vehicles, respectively.

     12.3.2 aDaPtive cruise control (acc) algorithMs 

As shown in Figure 12.3 (b), the ACC system usually operates in two modes, that is, 
spacing control (SC, in congested traffic) and velocity control (VC, in free-flow traffic) 
[57]. The transition between these two modes can be determined by a fixed spacing 
threshold such as the maximum unambiguous range (MUR) of the radar [72, 73],

 a t
a t s t s

a t s t sn cmd
n cmd
VC

n th

n cmd
SC

n th
,

, ,

, ,

,

,
( )= ( ) ( )>

( ) ( )≤





 (12.8)

where sth,  is the spacing threshold (m); an cmd,  is the final acceleration command 
(m/s2) adopted by the ACC system; while an cmd

VC
, and an cmd

SC
,  are acceleration com-

mands (m/s2) generated in the VC and SC modes, respectively. Alternatively, most 
previous studies implicitly implement the mode transition by comparing acceler-
ation commands of two modes, in which the more restrictive choice is adopted 
[74, 75],

 a t a t a tn cmd n cmd
VC

n cmd
SC

, , ,( ) , .= ( ) ( )( )min  (12.9)

In free-flow traffic, the ACC velocity control (VC) mode regulates the throttle and 
brake pedals to follow the set speed, which is specified in advance by the driver 
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via human-machine interface (HMI) [52]. This mode is usually accomplished by a 
linear proportional controller [76, 74, 73], as given by

 a t k V tn cmd
VC

n n, ,( )= − ( )( )0 u  (12.10)

where k0  is a positive coefficient ( s-1 ) and Vn  is the set speed (m/s) of the ACC 
system.

In congested traffic, the ACC spacing control (SC) mode aims to maintain a 
desired inter-vehicle spacing ( sn des, ), which is determined by the spacing policy 
as previously discussed. In the literature, the development of ACC algorithms is 
mainly focused on this control mode since congested traffic is a much more chal-
lenging environment for ACC operation [57]. Typical ACC spacing control algo-
rithms will be presented as follows.

12.3.2.1 Linear Controller
The linear controller is probably the most widely used ACC spacing control (SC) 
method in either academia or industry because it can facilitate theoretical analyses 
and hardware implementations [57, 77, 56]. A generic form of linear ACC control-
ler is described by

 a t k s t k tn cmd
SC

s n v n, ( ) ( ),( )= +∆ ∆u  (12.11)

where Dsn  and Dun  are the spacing error (between the actual and desired spacing 
values) and the relative speed (between the preceding and ego vehicles), respec-
tively, as given by Eq. (12.1); while ks  and kv  are positive coefficients ( s-2  and 
s-1 , respectively). The linear ACC control law using simple spacing policies, such 
as constant distance (CD) or constant time headway (CTH), cannot guarantee col-
lision-free at safety-critical (e.g., approaching a standstill vehicle at high speeds) 
or dense traffic conditions [72, 78, 79]. In these conditions, the ACC system is 
switched off in practice [57].

12.3.2.2 Model Predictive Control (MPC)
Advanced ACC systems usually have multiple design objectives, for example, 
minimizing tracking error (also known as spacing regulation error), preserving 
string stability, increasing ride comfort, and improving fuel economy, some of 
which are contradictory [80]. In addition, there are often multiple constraints 
imposed on ACC design solutions, such as actuator (the brake and throttle pedals) 
limit and safety limit [55]. MPC is a control framework that can optimize multiple 
objectives under different design constraints; therefore, the MPC-based ACC is 
usually formulated as a constrained optimization problem [81]. However, existing 
MPC algorithms suffer from a high computational load [80]. In the literature, a 
hybrid MPC approach is used to design ACC systems that can improve safety and 
tracking capability [82, 83]. An MPC-based ACC system is proposed to explicitly 
include acceleration constraints to meet comfort and safety needs [84]. In addition, 
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a multi-objective MPC-based ACC system is developed to simultaneously address 
multiple critical issues, including tracking capability, fuel economy, and driver 
desired response, in which limits on both acceleration and jerk are applied to guar-
antee ride comfort of the vehicle [80].

12.3.2.3 Sliding Mode Control (SMC)
SMC is a variable structure control method, which can switch back and forth 
between two continuous control laws based on the current position in the state 
space [85]. This switching approach makes SMC robust to nonlinear vehicle 
dynamics, actuator constraints, and external disturbances [86]. However, the 
main obstacle for its implementation is the chattering problem (the phenomenon 
of finite-frequency, finite-amplitude oscillations) [87]. There are some studies 
employing SMC algorithms to design ACC systems. For example, an ACC system 
based on the SMC algorithm and the CTH spacing policy is proposed, which can 
detect the presence of possible hazards in front of the vehicle and then switch 
between two spacing control modes, adaptive cruise mode and collision avoidance 
mode [88]. Similar SMC-based ACC systems are developed to overcome bounded 
disturbances under different spacing policies [89].

12.3.2.4 Fuzzy Logic (FL) Controller
FL-based ACC systems are proposed in several studies. For instance, an FL-based 
ACC system adopting the CTH spacing policy is reported to guarantee string stabil-
ity [90]. An adaptive FL method is used to develop an ACC system that can emulate 
human drivers’ behavior [91]. Another fuzzy controller is developed for both high-
level (to maintain safe spacing) and low-level (to adjust the throttle and brake pedals) 
control tasks, exhibiting a good performance at a broad range of speeds [92].

     12.3.3 cooPerative acc (cacc)

Using V2V and V2I communications, CACC extends ACC to achieve cooper-
ative maneuvers [74]. A  series of CACC studies, in terms of controller design, 
stability analysis, and real-world driving experiments, have been conducted in the 
California Partners for Advanced Transit and Highways (PATH) program [93, 94]. 
With the connectivity between vehicles, CACC allows the vehicle to maintain 
smaller headway compared to ACC [95].

By sharing vehicle operating states (e.g., position, speed, and emergency brak-
ing) in a distributed manner, CACC vehicles within a certain geographic area can 
cooperate with each other, which can maximize the benefits of automated driving 
in the following ways [96]. First, driving safety is enhanced because the down-
stream traffic information can be broadcasted to upstream vehicles in advance, 
significantly reducing the actuation delay [57]. Second, road capacity is increased 
owing to the reduced time (or distance) headway between consecutive vehicles 
[52]. Finally, energy economy and pollutant emissions are improved because both 
unnecessary speed changes and aerodynamic drag can be reduced [96].
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Based on CACC and ACC, the platoon control techniques have attracted exten-
sive interest for decades. Typical research topics of platoon control include spacing 
policies [97, 68], string stability [98, 99], dynamics heterogeneity [100, 101], time 
delays [102, 103], communication topologies (e.g., bidirectional) [104, 56], etc.

     12.3.4 ecological acc (ecoacc)

Increasing concerns over energy consumption and GHG emissions are giving rise 
to the development of EcoACC [105], which regulates the individual vehicle’s 
speed by minimizing not only spacing error (sn ) and relative speed (Dun ) but 
also fuel consumption. Most studies on EcoACC focus on internal combustion 
engine vehicles (ICEVs). For example, using road grade information provided by a 
high-definition (HD) map, predictive EcoACC systems are proposed to control the 
inter-vehicle spacing in an energy-efficient manner [106–108].

In addition, a few efforts are being made to develop EcoACC systems for 
HEVs and PHEVs, which can leverage the synergistic benefits of ACC and EMS 
in improving energy efficiency and exhaust emissions. For instance, a multi-objective 
EcoACC system is proposed to simultaneously improve fuel economy and ride 
comfort for an HEV, which adopts a rule-based (RB) energy management strategy 
(EMS) [109]. Another EcoACC system designed for PHEVs can use the traffic 
light information to predict the future trajectory of the preceding vehicle and then 
provide optimal speed and power control signals, which can minimize the fuel con-
sumption and satisfy the constraints associated with the vehicle’s safety and com-
fort [110]. By combining an ACC based on action dependent heuristic dynamic 
programming (ADHDP) and an adaptive EMS, an EcoACC system is developed to 
achieve near-optimal fuel economy and comfortable driving [111].

     12.4 MICROSCOPIC TRAFFIC MODELING

Unlike ACC models, which are discussed in Section 12.3 and developed to control 
the vehicle’s longitudinal driving behavior through mechanical (e.g., ICE, EM, 
and brake system) and electrical (e.g., radar and camera) components, microscopic 
car-following (CF) models focus on describing the resulting vehicle behavior and 
then estimating its impact on traffic flow dynamics in traffic simulations [112]. 
Traffic flow theory and microscopic traffic simulation are indispensable tools to 
maximize the benefits of ACEVs to the road network [113].

From the perspective of motion description, existing CF models can be cate-
gorized into two groups, namely, kinematics-based (or behavioral) and dynam-
ics-based [114]. The former is simple and concerns only variables derived from 
trajectories of vehicles, such as position, spacing, speed, and acceleration. The 
latter, however, can take into account variables underlying the vehicle movement, 
like forces, torque, and energy [115]. It is worth noting that both types of CF 
models should be able to strike a balance between simplicity and accuracy and 
therefore are feasible for large-scale traffic simulation [116].
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     12.4.1 kineMatics-BaseD traffic MoDels 

Kinematics-based (or behavioral) CF models describe the movement of the fol-
lowing vehicle as a function of its kinematic relationship to the preceding vehi-
cle, as depicted in Figure  12.3 (c), and, in the last seven decades, have been 
studied intensively by model simulation, experimental campaign, and traffic 
observation [117].

In Table 12.2, typical kinematics-based CF models are listed chronologically with 
the deterministic acceleration or speed equation and the associated parameters given 
in the last two columns [118]. In the early 1950s, Reuschel [119] and Pipes [120] did 
pioneering work on the development of behavioral CF models. Their model formula-
tions only consider either the inter-vehicle spacing ( sn ) or the relative velocity (Dun ,  
between the preceding and ego vehicles), and, therefore, have significant limitations 
in describing the vehicle behavior [121]. The Gazis–Herman–Rothery (GHR) model, 
proposed by Gazis et al. in 1961 [122], defines a nonlinear acceleration equation that 
considers reaction time ( t ) [113]. However, it is built upon strong assumptions, lead-
ing to critical drawbacks that are frequently reported by researchers, for example, 
the model overestimates the vehicle’s ability to perceive small changes in the relative 
speed (Dun ) and the headway (Dxn ) [123, 124]. Newell’s model assumes that the 
following vehicle’s response directly depends on the headway (Dxn ) [125], which, 
however, might result in unrealistic acceleration behavior [126].

As a major milestone towards the development of safety distance (or collision 
avoidance) CF models [126], Gipps model [127] developed in 1981 has been exten-
sively studied [128]. It describes the vehicle speed in a way assuming that the 
driver leaves enough safe distance in front and thus can safely stop the vehicle in 
case the preceding vehicle commences an emergency brake [129]. Similar to ACC 
models given in Eq. (12.9), Gipps model consists of two driving regimes, free-flow 
and congested, and chooses the more restrictive one from the resulting speeds of 
these two regimes [130].

The optimal velocity (OV) mode, proposed by Bando et al. [131], assumes 
that the vehicle attempts to follow an optimal (or safe) speed ( Vopt ) that depends 
on the headway (Dxn ). This model has received considerable attention because 
of its ability to accurately describe many traffic flow characteristics in the real 
world, such as traffic instability, traffic congestion evolution, and the formation of 
stop-and-go waves. However, a comparison between the simulated and observed 
vehicle trajectories indicates that the OV model exhibits significantly high acceler-
ation and unrealistic deceleration [132]. To overcome this limitation, Helbing et al. 
adopted the basic concept of the OV model, utilized negative velocity difference, 
and developed the generalized force model (GFM), which demonstrates a good 
agreement with empirical trajectory data [133] but is poor in predicting the delay 
time of vehicle movement [132]. Consequently, Jiang et al. [134] modified GFM in 
2001 by including the negative and positive velocity differences and then proposed 
the full velocity difference model (FVDM) [132].

The intelligent driver model (IDM), proposed by Treiber et al. [138] in 2000, is 
a breakthrough in the development of desired measure CF models, which usually 
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TABLE 12.2
Typical Kinematics-Based Car-Following (CF) Models
Model Year Acceleration or speed equations Parameters
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a H( )⋅  is Heaviside function.

Source: Adapted from Chen et al. [118, 139], Reuschel [119], and Gipps [127]
Note: Subscripts n and n-1  indicate the ego and preceding vehicles, respectively; ∆x tn n( )= −x t−1 n( ) x t( )  is the headway (m); ∆V tn n( )= V -1 ( )t V- n ( )t  
is the relative speed (m/s); s tn n( )= −x t- n1 1( ) x t( )− ln−  is the spacing (or gap, m); Vn  is the free-flow (or desired) speed; GHR = Gazis-Herman-Roth-
ery model; OV = optimal velocity model; GFM = generalized force model; IDM = intelligent driver model; FVDM = full velocity difference model.
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TABLE 12.3
Development of Dynamics-Based Car-Following (CF) Models

266

Full load engine Driveline and Gearshift Driving  Collision Traffic 
Model Year powera resistances behaviorb behaviorc avoidanced stabilityd Model output

Searle et al. [141] 1999 ✗ ✗ ✗ ✗ ✗ ✗
pmax

ice

Rakha et al. [142] 2001 ✗ ✓ ✗ ✗ ✗ ✗
pmax

ice

Rakha et al. [143] 2002 ✗ ✓ ✗ ✗ ✗ ✗ M
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Rakha et al. [144] 2004 ✗ ✓ ✗ ✓ ✗ ✗
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Rakha et al. [145] RPA 2009 ✗ ✓ ✗ ✓ ✓ ✓
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max t ulim ( )V s, ulim
ce gb ts n n ts ( )V sn n,

Rakha et al. [146] 2012 ✓ ✓ ✓ ✓ ✗ ✗
pFL

ice ( )υ ϕn g, wgb tgb

Fadhloun et al. [147] 2015 ✗ ✓ ✗ ✓ ✗ ✗
pmax

ice t Vgb ( )un n, yp
ic

al
T

Fadhloun et al. [148] FR 2019 ✗ ✓ ✗ ✓
β υ( ) x

n i⋅ p
ma
ce ω υgb ( )n n, ,υ −1 V sn n,

Makridis et al. [116] MFC 2019 ✓ ✓ ✓ ✓ ✗ ✗
pFL

ice ( )υ ϕn g w ( ), ,, gb
(GS) ω υgb n nV DS

He et al. [115] Electric MFC 2020 ✓ ✓ ✓ ✓ ✗ ✗
pFL υ ϕ (

em ( ) w GS)
n g, gb ω υgb ( )n n, ,V DS

a The ICE full load power ( )P
FL

 across the entire operating speed range can be calculated in three ways: 1) Pmax , which is a constant and equal to the peak power that the ICE can produce; 2) 
ice ice

β υ( )  · Pmax , which is a percentage of the ICE peak power; or 3) P
F L

( ,υ ϕ ) , which is a function of the vehicle speed un  and the engaged gear ratio .
n ice ice n g jg

b The gear shifting points within the vehicle speed range are defined by wgb  for each driver.
c The driver’s typical driving behavior can be represented as a percentage of the vehicle’s full load capabilities in two ways: 1) to multiply the full load ICE power curve by a power reduction 
(or throttle opening) factor, tdb ; or 2) to multiply the vehicle’s acceleration potential curve by an acceleration reduction factor, wgb . Both of these factors can be a constant or a function (the 
symbol with arguments in parentheses) for each driver.
d Collision avoidance and traffic stability, both of which belong to the interaction term (instead of the free-flow term) of the CF model, can be either formulated as speed limit functions 
(i.e., vlim and ulim

ts , respectively) or directly incorporated into the driving behavior function wdb .
Note: b  is the full load power adjustment factor for the ICE; un  and un-1  are speeds of the ego ( n ) and preceding (n-1) vehicles, respectively; V  is the desired or free-flow speed; sn  is 
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the inter-vehicle spacing (or gap); GS and DS are calibratable parameters capturing gearshift style and acceleration style, respectively; ICE = internal combustion engine; RPA = Rakha-
Pasumarthy-Adjerid model; FR = Fadhloun-Rakha model; MFC = microsimulation free-flow acceleration model.
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assume that vehicles aim to simultaneously reach both the desired (or free-flow) 
speed (Vn ) and the desired spacing (sn des, ). Its acceleration equation can ensure 
a smooth transition between the free-flow and congested driving regime [126]. 
Nevertheless, IDM does not provide a lower bound for the acceleration and, there-
fore, may lead to unrealistically large deceleration when the inter-vehicle spacing 
(sn ) drops significantly (e.g., in cut-in maneuvers) [140].

     12.4.2 DynaMics-BaseD traffic MoDels 

Dynamics-based CF models take into account features such as force, torque, and 
power underlying the vehicle movement [115]. As summarized in Table 12.3, it 
has been a growing field across several disciplines in recent years. Relevant publi-
cations remain few, almost all of which focus on conventional ICEVs powered by 
a gasoline or diesel ICE with a multi-ratio transmission. The pioneering work of 
Searle et al. [141] is crucial to our wider understanding of this area. In their model, 
however, the full load (FL) engine power ( )Pice

F L

 is assumed to be constant and 
equal to the peak engine power ( )Pice

max

 across the entire engine speed range. Also, 
the dynamics of the internal driveline (e.g., transmission and engine accessories) 
and external resistances (e.g., aerodynamic, rolling, and grade) are not consid-
ered; instead, their effects on the power losses are all incorporated into a constant, 
acceleration efficiency (( )ha ). Moreover, driving behavior, that is, how the driver 
utilizes the vehicle’s full load capabilities, is not indicated, thus, the model’s output 
is the maximum acceleration characteristics. In the subsequent study by Rakha 
et al. [142], the enhanced model accounts for detailed dynamics of the driveline 
and the resistances. Although the full load engine power ( )Pice

F L

 is still constant, 
the tractive force is upper bounded by the maximum force that can be sustained 
between the vehicle tires and the road surface. Rakha et al. [143] then developed a 
variable power dynamics model in 2002 by introducing a power adjustment factor 
(b ), which dealt with the full load power reduction caused by the effect of succes-
sive gear shifting at low speeds. The factor b  is a ramp function (with a positive 
intercept) of vehicle speed (vn), when v vn p£  (vp  is the speed at which maximum 
power occurs).

Rakha et al. [144] are the first of many who have attempted to capture typical 
driving behavior and vehicle dynamics at the same time. The typical acceleration 
output is achieved by introducing an acceleration reduction factor (wdb), which 
denotes the ratio of the driver’s actual acceleration to the vehicle’s theoretical 
capability. In contrast, the model proposed in 2009 by Rakha et al. [145] adopts 
a power reduction factor (tdb ) aiming to represent the percentage of the throttle 
opening; therefore, the power delivered from the engine can be assumed to be 
equal to a constant percentage of the full load engine power. Additionally, to cap-
ture the interaction of vehicles in the traffic flow, the model considers two speed 

constraints: vca

lim

 (v sn n-1, ) to avoid any collisions with the preceding vehicle and vts

lim

 
(V sn n, ) to maintain cruising in the steady-state traffic stream. Rakha et al. [146] 
developed the first model that explicitly captures the dynamics of engine power 
and gearshift. This research is critical, given that the full load engine power ( )Pice

F L
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during driving cannot be assumed to be constant over the entire vehicle speed 
range nor to be adjusted by a ramp function (b ) at the low-speed region. In fact, 
it is well known that the engine power at full load conditions varies as a function 
of the current vehicle speed (svn) and the engaged gear ratio (jg). Moreover, the 
gearshift behavior ( )wgb  in this model is designed as per a fixed engine speed 
threshold.

These three typical acceleration models reported by Rakha et al., however, 
reproduce the driving behavior (wgb  or tdb) and the gearshift behavior ( )wgb  using 
constant factors, thus they provide limited information in relation to each driver’s 
unique pattern of driving. Recognizing this deficiency, an enhancement proposed 
in 2015 by Fadhloun et al. [147] made the model representative of different driving 
patterns. The basic idea behind their research is to employ a variable throttle opening 
(tdb ) as a function of the vehicle speed (vn) and the driver’s desired speed (Vn).  
In 2019, Fadhloun et al. [148] further improved the model by incorporating the 
two constraints regarding vehicle interactions (i.e., collision avoidance and steady-
state traffic stream) into the driving behavior function wdb n n n nv v V s( , , ,1 ), which 
serves as an acceleration reduction factor. Makridis et al. [116] demonstrated the 
first study to account for different drivers’ driving behavior and gearshift behav-
ior simultaneously, by introducing two calibratable parameters, driving style (DS) 
and gearshift style (GS). Built on this work, He et al. [115] proposed a CF model 
(i.e., electric MFC) that marks the first attempt to account for the acceleration and 
deceleration dynamics of electrified vehicles.

     12.5 CONCLUSIONS AND OUTLOOK

In this chapter, we have explored the challenges and advancements in driving 
control and traffic modeling for automated, connected, and electrified vehicles 
(ACEVs). The integration of automation, connectivity, and electrification has 
the potential to revolutionize the road transport system, improving safety, effi-
ciency, and environmental sustainability. However, several challenges need to 
be addressed to fully realize the benefits of ACEVs and ensure their successful 
deployment.

The first challenge lies in the complex nature of road transport. The road envi-
ronment is dynamic and unpredictable, with various elements and stakeholders 
involved. ACEVs must navigate through diverse traffic conditions, interact with 
human-driven vehicles, and adapt to infrastructure limitations. These challenges 
require robust and reliable driving control systems that can handle complex sce-
narios and ensure safe and efficient operation.

Automated, connected, and electrified vehicles (ACEVs) play a crucial role in 
transforming the transportation landscape. Automation enables vehicles to take 
over driving tasks, reducing human errors and enhancing safety. Connectivity 
allows vehicles to communicate with each other and with the infrastructure, 
enabling cooperative systems and advanced functionalities such as platooning and 
intersection management. Electrification, likewise, promotes cleaner and more 
sustainable transportation by replacing conventional internal combustion engines 
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with electric powertrains. The integration of these technologies opens up new pos-
sibilities for ACEVs, but it also introduces new challenges in terms of system inte-
gration, interoperability, and infrastructure requirements.

Eco-cooperative automated driving systems (ADS) represent a promising 
approach to optimize traffic flow and reduce energy consumption. By enabling 
vehicles to cooperate and coordinate their movements, eco-cooperative ADS can 
minimize congestion, reduce travel times, and improve fuel efficiency. These 
systems rely on advanced algorithms, communication protocols, and sensor tech-
nologies to facilitate smooth and efficient traffic operations. However, the deploy-
ment of eco-cooperative ADS requires addressing technical, regulatory, and 
societal challenges, such as data privacy, liability, and acceptance by users and 
stakeholders.

Microscopic traffic modeling is an essential tool for understanding and pre-
dicting the behavior of ACEVs in traffic scenarios. Car-following (CF) models, 
which describe the behavior of vehicles following each other, play a crucial role 
in simulating traffic flow dynamics. Kinematics-based CF models focus on vari-
ables derived from vehicle trajectories, while dynamics-based CF models con-
sider the underlying forces and power dynamics. These models aim to strike a 
balance between simplicity and accuracy, enabling large-scale traffic simulations. 
However, further research is needed to improve the realism and applicability of 
CF models, especially in the context of ACEVs and their unique characteristics.

This chapter proposes several directions for future exploration. Initially, the 
advancement and implementation of ACEVs necessitate a holistic methodology 
that integrates knowledge from diverse fields including automotive engineering, 
computer science, transportation planning, and policy development. It is imper-
ative to foster collaboration among researchers, industry participants, and pol-
icymakers to effectively tackle the technical, regulatory, and societal obstacles 
linked to ACEVs. Additionally, research endeavors should prioritize improving 
the safety, dependability, and energy efficiency of ACEVs while also striving to 
create comprehensive and validated traffic models that accurately depict the intri-
cate interactions between ACEVs and the surrounding road infrastructure.

In conclusion, the integration of automation, connectivity, and electrification 
in road transport presents immense opportunities for improving safety, efficiency, 
and sustainability. However, several challenges need to be overcome to realize the 
full potential of ACEVs. By addressing these challenges and advancing research in 
driving control, eco-cooperative ADS, and traffic modeling, we can pave the way 
for a future where ACEVs play a central role in creating a safer, more efficient, and 
environmentally friendly transport system.
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